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Operation Research  

The first formal activities of operations research (OR) were initiated in England during  

second world war. When a team of British scientists set out to make scientifically based on 

decisions regarding the best utilization of war material. After the war the ideas advanced in 

military operation were adapted to improve efficiency and productivity  in the civilian 

secter. 

Linear programming)) 

 Linear programming is a deterministic mathematical technique, which involves the all 

location of scarce resources ( machinery , Labor, Money, Time, Warehouse space, and raw 

material) in an optimal manner, based on a given criterion of optimality frequently, the 

criterion of optimality is either maximum profit  or minimum cost, depending on the type of 

problem. 

   A linear programming (LP) model provides an efficient method for determining and 

optimal decision chosen from a large number of possible decisions. The optimal decision is 

the one that meet a specified objective of management subject to various restrictions and 

constraints.  

 Constructing Linear Programming Models  

Requirements to construct a linear programming models)) 

1. Objective Function: There must be an objective the firm wants to achieve, maximize profit 

or minimize cost. 

2. Restriction and Decisions: There must be alternative courses of action or decisions, one of 

which will achieve the objective. 

3. Linear objective function and linear constraints. We must be able to express the decision 

problem incorporating the objective and restrictions on the decisions using only linear 

equation and linear inequalities. That is, we must be able to state the problem as a linear 

programing model. 
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-Forms of Linear programming (LP) model: 

1.General form:- 

The general linear programming form can be expressed as follows : 

Find the values of variables  𝑋1, … , 𝑋𝑛 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 )𝑎𝑛  

Objective function which is a linear function of variables, such as    

[  𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑚 𝑍 = 𝐶1𝑋1 + 𝐶2𝑋2 +⋯+ 𝐶𝑛𝑋𝑛 ] 

Subject to 

{
 
 

 
 
𝑎11𝑋1 + 𝑎12𝑋2 +⋯+ 𝑎1𝑚𝑋𝑛 ≤,= , ≥ 𝑏1
𝑎21𝑋1 + 𝑎22𝑋2 +⋯+ 𝑎2𝑚𝑋𝑛 ≤,=,≥  𝑏2

⋮
𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 +⋯+ 𝑎𝑚𝑛𝑋𝑛 ≤,=,≥  𝑏𝑚

  

 

   And meet the non-negativity restrictions 

[𝑋1, 𝑋2, … , 𝑋𝑛 ≥ 0] 

Here variables Xj, j = 1,… , n are called 𝒅𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔, 𝑪𝒋, 𝒂𝒊𝒋, 𝑎𝑛𝑑 𝑏𝑖 

 (𝑖 = 1,… ,𝑚);  (𝑗 = 1,… , 𝑛) 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 

       𝑝𝑟𝑜𝑏𝑙𝑒𝑚  𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑪𝒋 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑛𝑒𝑡 𝑢𝑛𝑖𝑡 𝑐𝑜𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

       𝑋𝑗 , 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒆𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔, 

Constants 𝒃𝒊, 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝒊𝒕𝒉 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 

𝒔𝒕𝒊𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝒔 And constants 𝒂𝒊𝒋, 𝑠𝑡𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑎𝑦 𝒊 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 Variable (activity) 𝑿𝒋 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠                         . 

2.Cononical Form:- 

The general linear programming problem can always be put in the following form , called the 

canonical form: 

[  𝑀𝑎𝑥 𝑍 = 𝐶1𝑋1 + 𝐶2𝑋2 +⋯+ 𝐶𝑛𝑋𝑛 ] 

Subject to constraints 

{
 
 

 
 
𝑎11𝑋1 + 𝑎12𝑋2 +⋯+ 𝑎1𝑚𝑋𝑛 ≤ 𝑏1
𝑎21𝑋1 + 𝑎22𝑋2 +⋯+ 𝑎2𝑚𝑋𝑛 ≤ 𝑏2

⋮
𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 +⋯+ 𝑎𝑚𝑛𝑋𝑛 ≤ 𝑏𝑚
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[𝑋1, 𝑋2, … , 𝑋𝑛 ≥ 0] 

The characteristics of this form are 

(a) objective function is of maximization type, 

(b) all constraints are of the (≤) 𝑡𝑦𝑝𝑒 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒  

            (≥)𝑡𝑦𝑝𝑒, 

 ( c) all decisions variables are non-negative.    

Remark :- Any linear programming problem can be put in the canonical form by use of some 

elementary transformations. 

     1. The minimization of a function, 𝑓(𝑥 ), 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 . 

       𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,−𝑓(𝑥). 𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  

 Function.                       min 𝑍 =𝐶1𝑋1 + 𝐶2𝑋2 +⋯+ 𝐶𝑛𝑋𝑛 

             𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜,   𝑀𝑎𝑥 𝐺 = −𝑍 = −𝐶1𝑋1 − 𝐶2𝑋2 −⋯− 𝐶𝑛𝑋𝑛 𝑤𝑖𝑡ℎ 𝑍 = −𝐺. 

There for, for all linear programming problems the objective function can be expressed in 

the maximization form. 

2. An inequality constraint of (≥) 𝑡𝑦𝑝𝑒 𝑐𝑎𝑛 𝑏𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑒𝑞𝑢𝑙𝑖𝑡𝑦 𝑜𝑓 (≤) 𝑡𝑦𝑝𝑒 𝑏𝑦  

Multiplying each side of the inequality  by (−1). 𝐹𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 , 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

                                                                            𝑎1𝑋1 + 𝑎2𝑋2 ≥ 𝑏,   𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜  

                                                                   −𝑎1𝑋1 − 𝑎2𝑋2 ≤ −𝑏   

3. An equation may be replaced by two weak inequalities in opposite direction. For example 

     𝑎1𝑋1 + 𝑎2𝑋2 = 𝑏, 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

     𝑎1𝑋1 + 𝑎2𝑋2 ≤ 𝑏   𝑎𝑛𝑑   𝑎1𝑋1 + 𝑎2𝑋2 ≥ 𝑏   

𝑜𝑟                                   𝑎1𝑋1 + 𝑎2𝑋2 ≤ 𝑏   𝑎𝑛𝑑  − 𝑎1𝑋1 − 𝑎2𝑋2 ≤ −𝑏         

4. A inequality constraints with absolute form on the left hand side can be expressed as a 

combination of two regular inequalities. For example, for 𝑏 ≥ 0, 

                                                         |𝑎1𝑋1 + 𝑎1𝑋2| ≤ 𝑏     is equivalent to  

                            𝑎1𝑋1 + 𝑎2𝑋2 ≤ 𝑏   𝑎𝑛𝑑   𝑎1𝑋1 + 𝑎2𝑋2 ≥ −𝑏 

                               Similarly, for 𝑞 ≥ 0,    |𝑝1𝑋1 + 𝑝2𝑋2| ≥ 𝑞       𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜     
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𝑝1𝑋1 + 𝑝2𝑋2 ≥ 𝑞       𝑎𝑛𝑑    𝑝1𝑋1 + 𝑝2𝑋2 ≤ −𝑞 

5. If the decisions variables are unconstrained (unrestricted) in sign, that is, it may be 

positive, zero or negative. They can be expressed as the difference between two non-

negative variables. For example, 𝑋 = 𝑋′ − 𝑋′′ 𝑤ℎ𝑒𝑟𝑒 𝑋′ ≥ 0 𝑎𝑛𝑑 𝑋′′ ≥ 0. 

Value of 𝑋 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 , 𝑧𝑒𝑟𝑜 𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑋′is larger , equal or 

smaller than 𝑋′′. 

Remark: A minimization problem can also be in canonical form if all its variables are non-

negative and all its constraints are of (≥) 𝑡𝑦𝑝𝑒.  

3.Standard Form  

𝑀𝑎𝑥 𝑜𝑟 𝑀𝑖𝑚 𝑍 = 𝐶1𝑋1 + 𝐶2𝑋2 +⋯+ 𝐶𝑛𝑋𝑛 

s.t:  

{
 
 

 
 
𝑎11𝑋1 + 𝑎12𝑋2 +⋯+ 𝑎1𝑚𝑋𝑛 = 𝑏1
𝑎21𝑋1 + 𝑎22𝑋2 +⋯+ 𝑎2𝑚𝑋𝑛 = 𝑏2

⋮
𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 +⋯+ 𝑎𝑚𝑛𝑋𝑛 = 𝑏𝑚

  

 

[𝑋1, 𝑋2, … , 𝑋𝑛 ≥ 0], 𝑏1, 𝑏2, … , 𝑏𝑚 ≥ 0 

1.All variables are non-negative  

2. The right hand side of each constraint is non-negative  

3. All constraints are expressed as equations  

4.Objective function may be of maximization or minimization type. 

Remark: Any  L.P. problem can be put in standard form with the help of some elementary  

Transformation. 

1.Any unrestricted variable 𝑋𝑖  𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡𝑤𝑜 𝑛𝑜𝑛 −

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑖. 𝑒. 𝑋𝑖 = 𝑋𝑖
′ − 𝑋𝑖

′′ , 𝑋𝑖
′ ≥ 0, 𝑋𝑖

′′ ≥ 0 

2. If right hand side of a constraint is negative, it is multiplied on both sides by (-1) to make it 

positive. This will reverse the sign of inequality. 

3. The inequality constraints are changed to equality constraints by adding or subtracting a 

non-negative variable from the left hand side of such constraints. These new variables are 
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called slack variables. They are added if the constraints are 

(≤) 𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑟𝑒 (≥). 𝑆𝑖𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 (≥) 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠   

 𝑡ℎ𝑒 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑜𝑓 𝑙𝑒𝑓𝑡 ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑜𝑣𝑒𝑟 𝑟𝑖𝑔ℎ 

        −ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒, 𝑖𝑡 𝑖𝑠 𝑐𝑜𝑚𝑚𝑜𝑛𝑙𝑦 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 𝑖𝑠, 𝑖𝑛 𝑓𝑎𝑐𝑡 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

       𝑠𝑙𝑎𝑐𝑘 . Both decision variables as well as the slack and surplus variables are called  

          the addmissible  variables. Slack variables are as much a part of the problem as decision 

variables and are treated in the same manner while finding a solution to the problem.  

  These variables can remain postive  throughout the process of solution and their  

  values in the optimal solution give useful information about the problem 

For example, the constraint     

      𝒂𝟏𝑿𝟏 + 𝒂𝟐𝑿𝟐 ≤ 𝒃 , 𝐛 ≥ 𝟎 is changed in in the standard form to  𝑿𝟏 + 𝒂𝟐𝑿𝟐+𝑺𝟏 = 𝒃  

           where 𝑆1 ≥ 0. Also constraint   𝑝1𝑋1 + 𝑝2𝑋2 ≥ 𝑞 , q ≥ 0 is changed to   

              𝑝1𝑋1 + 𝑝2𝑋2 − 𝑆2 = 𝑞,𝑤ℎ𝑒𝑟𝑒 𝑆2 ≥ 0. 

The Quantities 𝑆1 𝑎𝑛𝑑 𝑆2 𝑎𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑟𝑖𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

          𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑜𝑡ℎ𝑒𝑟𝑋′ s in 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 

Example1: Change to canonical form  

𝑀𝑎𝑥 𝑍 = 𝑋1 + 2𝑋3 − 𝑋4 

S.t 

𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 = 10 

𝑋2 + 𝑋4 ≥ 4 

𝑋1 + 𝑋3 ≤ 8 

|𝑋2 + 𝑋3 − 𝑋4| ≤ 5 

𝑋1, 𝑋2 ≥ 0 

Solution : Since the variables 𝑋3, 𝑋4 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑣𝑖𝑙𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑛𝑎𝑔𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

Therefore they must be restricted in a signal as follow, 

 
 𝐿𝑒𝑡  𝑋3 = 𝑋3

′ − 𝑋3
′′, 𝑋3

′ , 𝑋3
′′ ≥ 0  𝑎𝑛𝑑   𝑋4 = 𝑋4

′ − 𝑋4
′′,   𝑋4

′ , 𝑋4
′′ ≥ 0 
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Substitute the values of 𝑋3, 𝑋4  𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 , 𝑤𝑒 𝑔𝑒𝑡 

𝑀𝑎𝑥 𝑍 = 𝑋1 + 2(𝑋3
′ − 𝑋3

′′) − (𝑋4
′ − 𝑋4

′′) 

S.t 

1.  𝑋1 + 𝑋2 + (𝑋3
′ − 𝑋3

′′) + (𝑋4
′ − 𝑋4

′′) ≤ 10 

       −𝑋1 − 𝑋2
 − (𝑋3

′ − 𝑋3
′′) − (𝑋4

′ − 𝑋4
′′) ≤ −10 

2. −𝑋2 − (𝑋4
′ − 𝑋4

′′) ≤ −4                                                        

3.   𝑋1 + (𝑋3
′ − 𝑋3

′′)
) ≤ 8                                       

4.   𝑋2 + (𝑋3
′ − 𝑋3

′′) − (𝑋4
′ − 𝑋4

′′) ≤ 5                  

−𝑋2 − (𝑋3
′ − 𝑋3

′′) + (𝑋4
′ − 𝑋4

′′) ≤ 5       

𝑋1, 𝑋2, 𝑋3
′ , 𝑋3

′′, 𝑋4
′ , 𝑋4

′′ ≥ 0   

Homework: Express the following L.P. problems in to standard form: 

(1)                                                  𝑀𝑎𝑥 𝑍 = 7𝑋1 + 5𝑋2 

Subject to                                          2𝑋1 + 3𝑋2 ≤ 20 

3𝑋1 + 𝑋2 ≥ 10 

𝑋1, 𝑋2 ≥ 0 

2.                                                   𝑀𝑎𝑥 𝑍 = 3𝑋1 + 2𝑋2 + 5𝑋3 

Subject to                                          2𝑋1 − 3𝑋2 ≤ 3 

𝑋1 + 2𝑋2 + 3𝑋3 ≥ 5 

3𝑋1 + 2𝑋3 ≤ 2 

𝑋1, 𝑋2 ≥ 0 

3.                                                𝑀𝑎𝑥 𝑍 = 3𝑋1 + 5𝑋2 − 2𝑋3 

𝑋1 + 2𝑋2 − 𝑋3 ≥ −4 

−5𝑋1 + 6𝑋2 + 7𝑋3 ≥ 5 

2𝑋1 + 𝑋2 + 3𝑋3 = 10 

𝑋1, 𝑋2 ≥ 0 , 𝑋3 𝑖𝑠 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛. 

The formulation of linear programming Model 
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Example 2: 

D and A company manufactures two products, each requiring a different manufacturing 

technique. The deluxe product requires 3 hours of labor, one hour of testing, and yields a 

profit of 10 dinars. The standard product requires 2 hours of labor, 2 hours of testing and 

yields profit 15 dinars. There are 15,000 hours of labor and 10,000 hours of testing available 

each year. A marketing forecast  has shown that the yearly demand for the deluxe model to 

be no more that 7,000, and yearly demand for the standard model to be no more that 8,000 

units.  

Management  want to know the number of each model to produce yearly that will maximize 

total  profit. Being this as linear  programming problem. 

Solution:                         𝑋1 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑢𝑥𝑒 𝑢𝑛𝑖𝑡𝑠  

𝑋2 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑢𝑛𝑖𝑡𝑠 

total hours 
available yearly 

Standard Deluxe  

15000 2 3 labor 
10000 2 1 Testing 

 15 10 Profit for each 
product 

 8000 7000 Total demand 

  

Objective function:        𝑀𝑎𝑥 𝑍 = 10𝑋1 + 15𝑋2 

Constraints :  

3𝑋1 + 2𝑋2 ≤ 15000 

𝑋1 + 2𝑋2 ≤ 10000 

𝑋1 ≤ 7000 

𝑋2 ≤ 8000 

𝑋1, 𝑋2, ≥ 0 
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Example 3: The standard weight of a special purpose brick is 5 kg and it contains two basic  

Ingredients 𝐵1, 𝐵2. 𝐵1 𝑐𝑜𝑠𝑡𝑠 𝑅𝑠. 5 𝑘𝑔⁄ 𝑎𝑛𝑑 𝐵2 𝑐𝑜𝑠𝑡𝑠 𝑅𝑠. 8 𝑘𝑔⁄ . Strength considerations 

dictate that the brick contains not more than 4 kg of 𝐵1𝑎𝑛𝑑 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 2 𝑘𝑔 𝑜𝑓 𝐵2. 

Since the demand for the product is likely to be related to the price of the brick. Formulate 

this as linear programming model. 

Solution: Let the quantities in kg of ingredients 𝐵1 𝑎𝑛𝑑 𝐵2 to be used to make the bricks be 

𝑋1 𝑎𝑛𝑑 𝑋2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 . 

Objective is to minimize the cost of the brick. 

i.e., 𝑀𝑖𝑛 𝑍 = 5𝑋1 + 8𝑋2 

Constraints are  

On the quantity of ingredient 𝐵1 :       𝑋1 ≤ 4 

On the quantity of ingredient 𝐵2 :       𝑋2 ≥ 2 

On the weight of the brick  :     𝑋1 + 𝑋2 = 5 

𝑋1, 𝑋2 ≥ 0 

Example 4:The manufacturer of tires, the production of tires by mixing two types of rubber 

𝐴 𝑎𝑛𝑏  𝑟𝑢𝑏𝑏𝑒𝑟 . Each of them consists of four main components 𝜇1, 𝜇2, 𝜇3, 𝑎𝑛𝑑 𝜇4.As in the 

Following table  

Composition required  Rubber 
B 

Rubber 
A 

          The basic 
Rubber   component 

  
 𝜇1 ــــــ 0.45 1

3 0.3 0.5 𝜇2 

 𝜇3 0.35 ــــ 1

1.5 0.2 0.15 𝜇4 

 24 32 The cost per unit  

Write the formulation linear programming model 

Solution: 𝑀𝑖𝑛 𝑍 = 32𝑋1 + 24𝑋2 

S.t 

0𝑋1 + 0.45𝑋2 ≥ 1                
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0.5𝑋1 + 0.3𝑋2 ≥ 3 

0.35𝑋1 + 0𝑋2 ≥ 1 

0.15𝑋1 + 0.2𝑋2 ≥ 1.5 

𝑋1, 𝑋2 ≥ 0 

Homework: A Commercial company, three types of exported goods to the world market. As 

in the following table: 

The amount allocated to 
the commodity 

Amount in the thousands of dinars 

 Commodity 
3 

Commodity 
2 

Commodity 
1 

Expenditures 

Equal 40000 Dinars  1 2 2 Marketing 
expenses 

Administrative 
//various 
expenses 

At least 30000 Dinars  2 1 2 

On the most equal 
100000 

3 2 4 

 3 4 5 Cost mode  

 Write the formulation linear programming model. 

 

-Method of solution o Linear programming Model 

1. Graphical method  

2. Simplex Method  

 1. Graphical method (Graphical solution) 

It is usually not possible to solve linear programing problems graphically if the problem 

involving more than two decision variables . The graphical solution procedure required to 

develop a graph that displays the possible solutions, 𝑋1 𝑎𝑛𝑑 𝑋2  values, where the values of  

𝑋1 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 ℎ𝑜𝑟𝑖𝑧𝑒𝑛𝑡𝑎𝑙 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋2 𝑜𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑥𝑖𝑠. 

Any point on the graph can be identified by 𝑋1 𝑎𝑛𝑑 𝑋2 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛  

   𝑔𝑟𝑎𝑝ℎ 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 𝑇ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑋1 = 0𝑎𝑛𝑑 𝑋2 = 0 𝑟𝑒𝑓𝑒𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑜𝑛                 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). 𝑇ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑒 𝑚𝑢𝑠𝑡 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑖𝑠 𝑡ℎ𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋1 𝑎𝑛𝑑 𝑋2 ≥ 0 . 
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 Example1: 
Find the optimal solution for linear programming problem. 

𝑀𝑎𝑥 𝑧 = 5𝑋1 + 3𝑋2 

S.t 

3𝑋1 + 5𝑋2 ≤ 15 

5𝑋1 + 2𝑋2 ≤ 10 

𝑋1, 𝑋2 ≥ 0 

Solution: Convert the first  constraint into equation, 

3𝑋1 + 5𝑋2 ≤ 15 →  3𝑋1 + 5𝑋2 = 15 and  

 

Let 𝑋1 = 0 → 3 × (0) + 5𝑋2 = 15 → 𝑋2 = 3, 𝑨(𝟎, 𝟑) 

Let 𝑋2 = 0 → 3𝑋1 + 5 × (0) = 15 → 𝑋1 = 5, 𝑩(𝟓, 𝟎) 

Also Convert the second  constraint into equation,  

 5𝑋1 + 2𝑋2 ≤ 10 → 5𝑋1 + 2𝑋2 = 10 

          𝑋1 = 0 → 𝑋2 = 5, 𝑪(𝟎, 𝟓) 

       𝑋2 = 0 → 𝑋1 = 2 , 𝑫(𝟐, 𝟎)  

Since the points A and D is determined so we will determine the intersection point E 

Now, we will find the intersection point E of the constraints by abbreviation method  

  3𝑋1 + 5𝑋2 = 15      × (5) 

 5𝑋1 + 2𝑋2 = 10       × (3) 

       15𝑋1 + 25𝑋2 = 75 

      − 15𝑋1 − 6𝑋2 = 30    

    
19𝑋2 = 45 → 𝑋2 = 2.37 , 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋2 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 𝑡𝑜 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒  

𝑜𝑓 𝑋1𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑋1 = 1.05 , 𝑬(𝟏. 𝟎𝟓, 𝟐. 𝟑𝟕)  

𝑀𝑎𝑥 𝑍 = 5𝑋1 + 3𝑋2 
5(0) + 3(3) = 9 

5(1.05) + 3(2.37) = 12.37 
5(2) + 3(0) = 10 

The optimal solution is 12.37 

(0,3) A 
(1.05,2.37) E 

(2,0) D 
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Example 2: Find the optimal solution for linear programming problem. 

𝑀𝑎𝑥 𝑍 = 10𝑋1 + 2𝑋2 

S.t 

3𝑋1 + 2𝑋2 ≤ 60 

2𝑋1 + 4𝑋2 ≤ 80 

𝑋1, 𝑋2 ≥ 0 

Solution: Convert the first  constraint into equation, 

       3𝑋1 + 2𝑋2 = 60 

       𝑙𝑒𝑡 𝑋1 = 0 → 2𝑋2 = 60 → 𝑋2 = 30 

Then the point 𝐴(0,30)  

Let 𝑋2 = 0 → 3𝑋1 = 60 → 𝑋1 = 20 

Then the point 𝐵(20,0) 

Convert the Second  constraint into equation, 

       2𝑋1 + 4𝑋2 = 80 

Let 𝑋1 = 0 → 4𝑋2 = 80 → 𝑋2 = 20 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝐶(0,20) 

Let  𝑋2 = 0 → 2𝑋1 = 80 → 𝑋1 = 40 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝐷(40,0) 

Now, we will find the intersection point E of the constraints by abbreviation method  

 3𝑋1 + 2𝑋2 = 60        × (2) 

       2𝑋1 + 4𝑋2 = 80  ,By subtraction second equation from first , we get 

               6𝑋1 + 4𝑋2 = 120 

      −2𝑋1 − 4𝑋2 = 80 

    
4𝑋1 = 40 → 𝑋1 = 10, 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋1 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)𝑡𝑜 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑋2 

30 + 2𝑋2 = 60 → 2𝑋2 = 30 → 𝑋2 = 15 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝐸(10, 15) 

We choose the points B, C And E because they are common in the solution region. 

𝑀𝑎𝑥 𝑍 = 10𝑋1 + 2𝑋2 𝑋2 𝑋1  

10(20) + 12(0) = 200 0 20 B 
10(0) + 12(20) = 240 20 0 C 
𝟏𝟎(𝟏𝟎) + 𝟏𝟐(𝟏𝟓) = 𝟐𝟖𝟎 15 10 E 

The optimal solution of the given problem is 280 which is at point E 
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Home work:  

Find the optimal solution for the linear programming model  

  1. 𝑀𝑎𝑥 𝑍 = 4𝑋1 + 3𝑋2 

              S.t 

             5𝑋1 + 3𝑋2 ≤ 30 

             2𝑋1 + 3𝑋2 ≤ 21 

         𝑋1, 𝑋2 ≥ 0 

 

2. 𝑀𝑎𝑥 𝑍 = 𝑋1 + 2𝑋2 

              S.t 

             𝑋1 + 2𝑋2 ≤ 10 

             𝑋1 + 𝑋2 ≤ 1 

                 𝑋2 ≤ 4 

         𝑋1, 𝑋2 ≥ 0 

 

3. 𝑀𝑎𝑥 𝑍 = 3𝑋1 + 9𝑋2 

              S.t 

             𝑋1 + 4𝑋2 ≤ 8 

     𝑋1 + 2𝑋2 ≤ 4      

         𝑋1, 𝑋2 ≥ 0 
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The Simplex Method (Technique or Algorithm) 

   The graphical method can not be applied when the number of variables involved in the L.P. 

problem is more than three or rather two. The simplex method  can be used to solve any 

L.P. problem (for which the solution exists) involving any number of variables and 

constraints (hundred or even thousand).                                                                                              

  The computational procedure in the simplex method is based on the fundamental property 
that the optimal solution to an L.P. problem, if it exists, occurs only at one of the corner 
points of the feasible region, which is one of the corner points of the feasible region. This 
solution is the tested i.e. it is ascertained whether improvement in the value of the objective 
function is possible by moving to the next corner point of the feasible region. If so the 
solution at this point is obtained. This search for better corner point is repeated, till after a 
finite number of trials, the optimal solution if it exists, is obtained.                                               

For convenience, re-state The L.P. problem in standard form : 

𝑴𝒂𝒙 𝒁 = 𝑪𝟏𝑿𝟏 + 𝑪𝟐𝑿𝟐 +⋯+ 𝑪𝒏𝑿𝒏 + 𝟎𝑺𝟏 + 𝟎𝑺𝟐 +⋯+ 𝟎𝑺𝒎                (1) 

Subject to constraints 

𝑎11𝑋1 + 𝑎12𝑋2 +⋯+ 𝑎1𝑛𝑋𝑛 + 𝑆1 = 𝑏1                                       
𝑎21𝑋1 + 𝑎22𝑋2 +⋯+ 𝑎2𝑛𝑋𝑛 + 𝑆2 = 𝑏2                                                             (2) 
⋮                       ⋮                      ⋮             ⋮              ⋮                                                  
𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 +⋯+ 𝑎𝑚𝑛𝑋𝑛 + 𝑆𝑚 = 𝑏𝑚        

 
And 𝑋1, 𝑋2, … , 𝑋𝑛, 𝑆1, 𝑆2, … , 𝑆𝑚 ≥ 0                                                           (3) 

For easiness, an obvious starting basic feasible solution of m equations (2)is usually taken as: 

𝑋1 = 𝑋2 = ⋯ = 𝑋𝑛 = 0 ; 𝑆1 = 𝑏1, 𝑆2 = 𝑏2 , … , 𝑆𝑚 = 𝑏𝑚. For this solution , the value of the 
objective function (1) is zero. 𝑋1, 𝑋2 , … , 𝑋𝑛 (𝑒𝑎𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜) are non-basic variable 
and remaining non-zero variables (𝑆1, 𝑆2, … , 𝑆𝑚) 𝑎𝑟𝑒 𝑏𝑎𝑠𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

 

Example 1.Solve the L.P. problem   
 

𝑀𝑎𝑥 𝑧 = 3𝑋1 + 2𝑋2 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑋1 + 𝑋2 ≤ 4 
𝑥1 − 𝑥2 ≤ 2 

   

𝑋1, 𝑋2 ≥ 0 

Solution:  

Step1: First, Observe whether all the right side constants of the constraints are non-negative 

. If not, it can be changed in to positive value on multiplying both sides of constraint by -1 . 
In this example all the 𝑏𝑖  (right side constants ) are already positive. 

يما اذا كان كل قيم الثوابت في الطرف الايمن غير سالبة . واذا وجد احد القيم سالب , من الممكن شاهد فناولا  -1

 ( . في هذا المثال كل قيم الطرف الايمن موجبة .1-تحويلة الى قيمة موجبة بضرب طرفي المتباينة بالعدد )

Step 2: Express the problem into standard form. 
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Convert the inequality constraints to equations by introducing the non-negative slack 
or surplus variables. The coefficients of slack and surplus variables are always taken 
zero in the objective function. In this example, all inequality constraints being '≤ ′ 
only slack variables 𝑆1 𝑎𝑛𝑑 𝑆2 are needed. Therefore given problem now becomes:   

 
𝑀𝑎𝑥 𝑧 = 3𝑋1 + 2𝑋2 + 3𝑋3 + 0𝑆1 + 0𝑆2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑋1 + 𝑋2 + 𝑆1 = 4 
𝑥1 − 𝑥2 + 𝑆2 = 2 

 
𝑋1, 𝑋2, 𝑆1, 𝑆2 ≥ 0 

 

 سي.عبر عن المسالة بالشكل القيا -2
متغيرات مكملة او فائضة غير سالبة. دائما تؤخذ قيمة المعاملات للمتغيرات  بإضافةحول المتباينة الى معادلة 

لذلك فقط  ≥المكملة او الفائضة صفر في دالة الهدف. في هذا المثال كل قيود المتباينة تكون على الشكل 
,𝑆2  المتغيرات المكمل 𝑆1   . سوف نحتاج 

Step 3: Find the initial basic feasible solution and constraints a table called complex 

table. 

We shall start with a basic solution which we shall get by assuming the profit earned is zero. 
This we will be so when non-basic variables 𝑋1 = 𝑋2 = 0.Column 𝑋𝐵 gives the values of 
basic variables as indicated in the first column. Setting  𝑋1 = 𝑋2 = 0, the constraints yields 
the following initial basic feasible solution 𝑆1 = 4 𝑎𝑛𝑑 𝑆2 = 2 𝑎𝑛𝑑 𝑍 = 0.  
The above information can be expressed in the form of table (1) called simplex table. 

Note: In this step, the variables 𝑆1 𝑎𝑛𝑑 𝑆2 are corresponding to the columns of basis matrix  
(identity matrix), so we will be called basic variables. Other variables, 𝑋1 𝑎𝑛𝑑 𝑋2 are non-
basic variables which always have the value zero. 

مع الحل الاساسي والذي نحصل عليه بفرض الربح يساوي صفر. وهذا يكون عندما تكون  نبدء  سوف -3
X1  المتغيرات الغير الاساسية  = X2 = قيم المتغيرات الاساسية كما مشار اليها في 𝑋𝐵 . يعطي العمود  0

𝑋1العمود الاول . بوضع  = 𝑋2 =  تنتج القيود الحل المقبول الاساسي الابتدائي   0
 𝑆1 = 4 𝑎𝑛𝑑 𝑆2 = 2 𝑎𝑛𝑑 𝑍 = 0. 

 
   

0  0 2 3 𝐶𝑗 

Min  ratio 
𝑋𝐵

𝑋𝑘
⁄ 𝑓0𝑟 𝑋𝑘 ≥ 0 

 
Basis Matrix 

𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 

To be computed 
the next step 

0 1 1 1 𝑋𝐵1 = 4  𝐶𝐵1
= (0) 

𝑆1 

 1 0 −1 1 𝑋𝐵2 = 2  𝐶𝐵2
= (0) 

𝑆2 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗 

∆4= 0 ∆3= 0 ∆2= −2 ∆1= −3 
↑ 

𝑍 = 𝐶𝐵𝑋𝐵 = 0  
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Remark: 
1. The first row 𝐶𝑗 ,  indicates the coefficients of the variables in the objective function. These 

coefficients remain unchanged in the subsequent table. 
يمثل معاملات المتغيرات في دالة الهدف . وان هذه المتغيرات تبقى قيمتها كما هي في الجداول  𝐶𝑗.الصف الاول 1

 اللاحقة

2. The second column (𝐶𝐵) 𝑐𝑜𝑙𝑢𝑚𝑛) such that 𝐶𝐵 = (𝐶𝐵1, 𝐶𝐵2) in this example, represents  

The coefficients of the current basic variables in the objective function. For initial basic 
feasible solution, 𝐶𝐵 = (0,0) 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑒𝑥𝑎𝑚𝑝𝑙𝑒.  

يمثل معاملات المتغيرات الاساسية الحالية في دالة الهدف والمتمثلة في الجدول اعلاه . لذلك قيم تلك  𝐶𝐵ود الثاني . العم2
𝐶𝐵المعاملات الى الحل الاساسي الاولي المقبول هو  = (0,0). 

3. The first column is the basis column. It represents the basic variables of the current 
solution. In table (1) , the basic variables are the slack variables 𝑆1, 𝑆2. 

( اعلاه , 1. العمود الاول هو العمود الاساس . الذي يمثل المتغيرات الاساسية في الحل الحالي . في الجدول )3
,𝑆1المتغيرات الاساسية هي المتغيرات المكملة  𝑆2 . 

4. The third column  𝑋𝐵𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 , 𝑡ℎ𝑎𝑡 𝑖𝑠, 

 
 
𝑋𝐵 = (𝑋𝐵1, 𝑋𝐵2) = (𝑆1, 𝑆2). For initial basic feasible solution 𝑋𝐵 = (4, 2) 

المتغيرات الاساسية , وهذا يعني قيم  𝑋𝐵العمود الثالث يمثل . 4
 
𝑋𝐵 = (𝑋𝐵1, 𝑋𝐵2) = (𝑆1, 𝑆2) ويكون قيم تلك .

𝑋𝐵المتغيرات في الحل الاساسي الاولي المقبول هو  = (4, 2). 

 

Step 5: Proceed to test the basic feasible solution for optimality by the rules given below.  

This is done by computing the 'net evaluation' ∆𝑗 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋𝑗  by the formula. 

Thus, we get 
∆1= 𝐶𝐵𝑋1 − 𝐶1 = (0, 0)(1,1) − 3 = (0 × 1 + 0 × 1) − 3 = −3 
∆2= 𝐶𝐵𝑋2 − 𝐶2 = (0, 0)(1,−1) − 2 = (0 × 1 − 0 × 1) − 2 = −2 
∆3= 𝐶𝐵𝑆1 − 0 = (0, 0)(1,0) − 0 = (0 × 1 + 0 × 0) − 0 = 0 
∆4= 𝐶𝐵𝑆2 − 0 = (0, 0)(0,1) − 0 = (0 × 0 + 0 × 1) − 0 = 0 

 

Remark: 
Note that in the starting simplex table ∆𝑗

′𝑠 are same as (−𝐶𝑗)′𝑠. Also , ∆𝑗
′𝑠 corresponding to  

The columns of unit matrix (basis matrix) are always zero. So there is no need to calculate 
them. 

Optimality Test: 
1.If all ∆𝑗(= 𝑍𝑗 − 𝐶𝑗) ≥ 0, the solution under test will be optimal. Alternative 

optimal solutions will exist if any non-basic ∆𝑗 is also zero.  

=)𝑗∆. اذا كان كل قيم  1 𝑍𝑗 − 𝐶𝑗) ≥  سوف يكون الحل تحت الاختبار هو الحل الامثل .  0

2. If at least one ∆𝑗 is negative, the solution under test is not optimal, then proceed 

to improve the solution in the next step.  
, اذن تحسين الحل ير امثل سوف يكون الحل تحت الاختبار حل غ 𝑗∆. اذا كان واحد على الاقل من قيم 2

 للوصول الى الحل الامثل بالخطوة التالية 

3. If corresponding to any negative ∆𝑗, all elements of the column 𝑋𝑗  are negative 

or zero (≤ 0), then the solution under test will be unbounded. 
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≥سالبة او صفر  𝒋∆اظرة الى اي قيمة سالبة المن 𝑿𝒋. اذا كان كل قيم العمود 3 ( , فان الحل تحت ,(𝟎

 الاختبار سوف يكون غير محدد. 
Applying these rules for testing the optimality of starting basic feasible solution, it 
is observed that ∆1 𝑎𝑛𝑑 ∆2 both are negative. Hence we have to proceed to 
improve this solution in step 6. 

 

كلاهما  𝑎𝑛𝑑 ∆2 1∆, سوف نشاهد  الممكنبتطبيق هذه القواعد في اختبار امثلية الحل الى الحل الابتدائي 
 سالب . لذلك سوف نستمر بتحسين الحل في الخوة القادمة .

Step6: In order to improve this basic feasible solution, the vector entering the 

basis matrix and the vector to be removed from the basis matrix are determined 
by the following rules. Such vectors are usually named as 'incoming vector' and 
'outgoing vector' respectively. 

 
الممكن , نحدد المتجه الداخل والمتجه الخارج من المصفوفة . لكي نحسن الحل الاساسي الخطوة السادسة

 الاساس باستخدام القاعدة التالية .

 'Incoming vector'. The incoming vector 𝑋𝑘 is always selected corresponding to the 
most negative value of  ∆𝒋 (say∆𝒌). Here ∆𝒌= 𝒎𝒊𝒏(∆𝟏, ∆𝟐) = 𝒎𝑖𝑛[−3,−2] =

−3 = ∆1 Therefore, 𝑘 = 1 and hence column vector 𝑋1 must enter the basis 
matrix . The column vector  𝑋1 is marked by an upward arrow (↑). 

 

 . وهنا  𝒋 (say∆𝒌)∆الى المناظر الى القيمة السالبة الاكبر  𝑋𝑘. يختار دائما المتغير الداخل المتغير الداخل

. Here ∆𝒌= 𝒎𝒊𝒏(∆𝟏, ∆𝟐) = 𝒎𝑖𝑛[−3,−2] = −3 = 𝑘لذلك   1∆ =  𝑋1والمتجه العمود  1

 يدخل المصفوفة الاساس . يكتب مع المتجه الداخل علامه الى الاعلى.
 

'outgoing vector'. The outgoing vector 𝑆𝑟 is selected corresponding to minimum 
ratio of elements of 𝑋𝐵 by the corresponding positive elements of predetermined 
incoming vector 𝑋𝑘. This rule is called the minimum ratio rule. This rule can be 
written as 

القيم الموجبة والمحددة من ناتج قسمة  المناظر الى اقل نسبة من 𝑆𝑟المتجة الخارج. يختار المتجه الخارج 
𝑋𝐵    على قيم المتجه𝑋1 . 

𝑋𝐵𝑟
𝑋𝑟𝑘

= min [
𝑋𝐵𝑟
𝑋𝑖𝑘

 , 𝑋𝑖𝑘 > 0] 

𝐹𝑜𝑟 𝑘 = 1       
𝑋𝐵𝑟
𝑋𝑟1

= 𝑚𝑖 𝑛 [
𝑋𝐵1
𝑋11

,
𝑋𝐵2
𝑋21

] = 𝑚𝑖𝑛 [
4

1
 ,
2

1
] 

𝑋𝐵𝑟
𝑋𝑟1

=
2

1
= 
𝑋𝐵2
𝑋21

             

Comparing both sides of this equation, we get r=2. So that the vector 𝑆2 marked with 
downward arrow (↓) should be removed from basis matrix. Now starting table (1) is 
modified to table (2).  

 

يجب ان يزال من  (↓)والمؤشر بعلامة السهم  𝑆2. لذلك المتجه   r=2الجانبين من المعادلة , نحصل على  بمقارنة كلا

 . الآن نكتب الجدول الثاني المعدل.المصفوفة الاساس 
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0 0 2 3 𝐶𝑗 

Min  ratio 
𝑋𝐵

𝑋𝑘
⁄ 𝑓0𝑟 𝑋𝑘 ≥ 0 

 
Basis Matrix 

𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 

4

1
 

0 1 1 1 𝑋𝐵1 = 4  𝐶𝐵1
= (0) 

𝑆1 

𝟐

𝟏
 min. ratio 1 0 −1 ↑ 

← [𝟏] → 
𝑋𝐵2 = 2  𝐶𝐵2

= (0) 
𝑺𝟐 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗 

∆4
= 0 

∆3= 0 ∆2= −2 ∆𝟏= −𝟑 
↑ min. ∆𝑗 

Entering 
vector 

𝑍 = 𝐶𝐵𝑋𝐵 = 0  

 

Step 7. In order to bring 𝑆2 = [
0
1
] in place of incoming vector 𝑋1 = [

1
1
], unity must occupy in 

the marked '[ ]′ position and zero at all other places of 𝑋1. If the number in the marked 
′[ ]′ position is other than unity, divided all elements of that row by the 'key element'. (The 
element at the intersection of minimum ratio arrow (←) and incoming  arrow (↑) is called 
the key element or pivot element). 

 

 والذي يحمل  key elementيجب ان نحول  𝑆2حل المتغير الخارج م 𝑋1المتغير الداخل  يحل لكي : الخطوة سبعة

]′العلامة  الى اصفار , وكذلك نقسم جميع القيم في ذلك الصف على  𝑋1وجميع القيم في العمود الداخل  واحد الى ′[

key element  . العنصر والذي يقع عند تقاطع اقل خارج قسمة والمتغير الداخل يدعى (key element or pivot 
element) 

Then, subtract appropriate multiplies of this new row from the other (remaining)rows, so as 
to obtain zeros in the remaining positions of the column 𝑋1. Thus, the process can be 
fortified by simplex matrix transformation as follows: 

   The intermediate coefficient matrix is : 

 

 الى اصفار  𝑋1بعد ذلك , بضرب ذلك الصف بعدد مناسب وطرحه من الصفوف الاخرى لكي نحول بقية القيم في العمود 

 

𝑆2 𝑆1 𝑋2 𝑋1 𝑋𝐵 
0 1 1 1 4 𝑅1 

1 0 -1 1 2 𝑅2 

← ∆𝑗  0  0 -2 -3 Z=0 𝑅3 
Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅3 → 𝑅3 + 3𝑅2 to obtain  

𝑆2 𝑆1 𝑋2 𝑋1 𝑋𝐵 
-1 1 2 0 2 

1 0 -1 1 2 

← ∆𝑗 3 0 -5 0 Z=6 
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Now, construct the improved simplex table (3) as follows: 

 

0 0 2 3 𝐶𝑗 

Min  ratio 
𝑋𝐵

𝑋𝑘
⁄ 𝑓0𝑟 𝑋𝑘 ≥ 0 

 
Basis Matrix 

𝑿𝟐 
 

𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 
2

2
← 𝑘𝑒𝑦 𝑟𝑜𝑤 

-1 1 [𝟐] 0 2 0 𝑺𝟏 

(Negative value is 
not considered) 

1 0 
 

−1 1 2  3 𝑋1 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗 

3 𝟎 
↓ 

−𝟓 
↑ 

0 
 

𝑍 = 𝐶𝐵𝑋𝐵 = 0  

From this table, the improved basic feasible solution is read as : 𝑋1 = 2, 𝑋2 = 0,  
𝑆1 = 2, 𝑆2 = 0 the improved value of 𝑍 = 6. 
Remark: Note that ∆𝒋′𝒔 are also computed while transforming the table by matrix method. 

However, the correctness of ∆𝒋′𝒔 can be verified by computing them independently by using 

the formula  
∆𝒋= 𝒁𝒋 − 𝑪𝒋 = 𝑪𝑩𝑿𝒋 − 𝑪𝒋 

Step 8: Now repeat step 5 through 7 as and when needed until an optimal solution is 
obtained table 3.                      ∆𝑘= 𝑚𝑜𝑠𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ∆𝑗= ∆2. 

Therefore, 𝑘 = 2 and hence 𝑋2 should be the entering vector (key column). By minimum 

ratio rule :   Minimum ratio(
𝑋𝐵

𝑋2
, 𝑋2 > 0) = 𝑚𝑖𝑛 [

2

2
, −] (since negative ratio is not counted, 

so the second ratio is not considered). 
Since first ratio is minimum, remove the first vector 𝑆1 from the basis matrix. Hence the key 
element is. Divided the first row by key element 2, the intermediate coefficient matrix is 
obtained as: 

𝑆2 𝑆1 𝑋2 𝑋1 𝑋𝐵 

−
1

2
 

1

2
 

1 0 1 𝑅1 

1 0 -1 1 2 𝑅2 

← ∆𝑗 3 0 -5 0 Z=6 𝑅3 

Applying  𝑅2 → 𝑅2 + 𝑅1,     𝑅3 → 𝑅3 + 5𝑅1 

 

 

 

𝑆2 𝑆1 𝑋2 𝑋1 𝑋𝐵 

−
1

2
 

1

2
 

1 0 1 

1

2
 

1

2
 

0 1 3 

← ∆𝑗 1

2
 

5

2
 

0 0 Z=11 
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Now, construct the improved simplex table (4) which is final simplex table as follows: 

0 0 2 3 𝐶𝑗 

Min  ratio 
𝑋𝐵

𝑋𝑘
⁄ 𝑓0𝑟 𝑋𝑘 ≥ 0 

 
Basis Matrix 

𝑿𝟐 
 

𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 

2

2
← 𝑘𝑒𝑦 𝑟𝑜𝑤 −

1

2
 

1

2
 

1 0 1 2 𝑋2 

(Negative value is 
not considered) 

1

2
 

1

2
 

0 1 3  3 𝑋1 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗 

1

2
 

𝟓

𝟐
 

𝟎 0 
 

𝑍 = 𝐶𝐵𝑋𝐵 = 11  

 

The solution as read from this table is 𝑋1 = 3 , 𝑋2 = 1 , 𝑆1 = 0 , 𝑆2 = 0, 𝑎𝑛𝑑 𝑀𝑎𝑥 𝑍 = 11.  
Also, using formula ∆𝑗= 𝑍𝑗 − 𝐶𝑗 = 𝐶𝐵𝑋𝑗 − 𝐶𝑗  verify that all ∆𝑗  

′ 𝑠 are non-negative Hence the 

optimal solution is  𝑋1 = 3 , 𝑋2 = 1,𝑀𝑎𝑥 𝑍 = 11.   

 

-Simple Way For Simplex Method Computations  
Complete solution with its different computational steps can be more conveniently 
represented by the following single table. 

 0 0 2 3 𝐶𝑗 

Min Ratio 
𝑋𝐵

𝑋𝑘
⁄  

𝑆2 𝑆1 𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
Variables  

4

1
 

0 1 1 1 4 0 𝑆1 

𝟐

𝟏
 ← 𝑴𝒊𝒏 

1 0 −1 [1] 2 0 ← 𝑆2 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗 

0 
↓ 

0 −2 −3* 
↑ 

𝑍 = 𝐶𝐵𝑋𝐵 = 0 𝑋1 = 𝑋2
= 0 

𝟐

𝟐
 ←Min 2 1 [2] 0 2 0 ← 𝑆1 

− 1 0 −1 1 
 

2 3 𝑋1 

∆𝑗 3 0 −𝟓* 
↑ 

0 𝑍 = 𝐶𝐵𝑋𝐵 = 6 𝑋2 = 𝑆2
= 0 

 
−
1

2
 

1

2
 

1 0 1 2 𝑋2 

 1

2
 

1

2
 

0 1 3 3 𝑋1 

  
∆𝑗≥ 0 All 

1

2
 

5

2
 

0 0 𝑍 = 𝐶𝐵𝑋𝐵 = 11 𝑆1 = 𝑆2
= 0 

 



20 
Asst. Lecturer  Naser Oda Jassim 

Thus, the optimal solution is obtained as : 𝑿𝟏 = 𝟑,𝑿𝟐 = 𝟏 ,𝑴𝒂𝒙 𝒁 = 𝟏𝟏 . 
 

Example 1.Solve the L.P. problem   

𝑀𝑖𝑛 𝑧 = 𝑋1 − 3𝑥2 + 2𝑋3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

3𝑋1 − 𝑋2 + 3𝑋3 ≤ 7 

−2𝑋1 + 4𝑋2 ≤ 12 

−4𝑥1 + 3𝑋2 + 8𝑋3 ≤ 10                                                                            

𝑋1, 𝑋2, 𝑋3 ≥ 0 

Solution: This is the problem of minimization. Converting the objective function 

from minimization to maximization, we have  
𝑀𝑎𝑥 − 𝑍 = −𝑋1 + 3𝑥2 − 2𝑋3 = 𝑀𝑎𝑥 𝑍

′  𝑤ℎ𝑒𝑟𝑒 − 𝑍 = 𝑍′ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

3𝑋1 − 𝑋2 + 3𝑋3 + 𝑆1 = 7 

−2𝑋1 + 4𝑋2 + 𝑆2 = 12 

−4𝑥1 + 3𝑋2 + 8𝑋3 + 𝑆3 = 10 

𝑋1, 𝑋2, 𝑋3, 𝑆1, 𝑆2, 𝑆3 ≥ 0 

𝐻𝑒𝑟𝑒 𝑤𝑒 𝑔𝑖𝑣𝑒 𝑜𝑛𝑙𝑦 𝑡𝑎𝑏𝑙𝑒 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

 0 0 0 −2 3 −1 𝐶𝑗 

Min. Ratio 
𝑋𝐵 𝑋𝑘⁄  

𝑆3 𝑆2 𝑆1 𝑋3 𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variable  

− 0 0 1 3 −1 3 7 0 𝑆1 

12 4⁄ = 3
← 𝑀𝑖𝑛 

0 1 0 0 [4] −2 12 0 𝑆2 

10 3⁄  1 0 0 8 3 −4 10 0 𝑆3 

← ∆𝑗 0 0 
↓ 

0 2 −3* 

↑ 
1 𝑍 = 0 , 𝑍′ = 0 𝑋1 = 𝑋2

= 𝑋3 = 0 
10

5
2

= 4 
0 1

4
 

1 3 0 
[
5

2
] 

10 0 𝑆1 

− 0 1

4
 

0 0 1 
−
1

2
 

3 3 𝑋2 

− 1 
−
3

4
 

0 8 0 
−
5

2
 

1 0 𝑆3 

← ∆𝑗 0 3

4
 

0 
↓ 

2 0 
(−

1

2
) ∗ 

↑ 

𝑍′ = 9 , ∴ 𝑍 = −9 𝑋1 = 𝑆2
= 𝑋3 = 0 

 0 1

10
 

2

5
 

6

5
 

0 1 4 −1 𝑋1 

 0 3

10
 

11

20
 

3

5
 

1 1 5 3 𝑋2 

 1 
−
1

2
 

1 11 0 0 11 0 𝑆3 

← ∆𝑗≥ 0 0 4

5
 

1

5
 

13

5
 

0 0 𝑍′ = 11, ∴ 𝑍 = −11 𝑆1 = 𝑆2
= 𝑋3 = 0 
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The optimal solution is: 𝑋1 = 4, 𝑋2 = 5 , 𝑋3 = 0 ,𝑀𝑖𝑛 𝑍 = −11 

Homework: 

 1.Solve the L.P. problem   

𝑀𝑎𝑥 𝑍 = 3𝑋1 + 2𝑥2 + 5𝑋3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑋1 + 2𝑋2 + 𝑋3 ≤ 430 

3𝑋1 + 2𝑋3 ≤ 460 

𝑥1 + 4𝑋2 ≤ 4                                                   

𝑋1, 𝑋2, 𝑋3 ≥ 0 

2.  

𝑀𝑎𝑥 𝑍 = 10𝑋1 + 12𝑥2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

2𝑋1 + 3𝑋2 ≤ 15 

3𝑋1 + 2𝑋2 ≤ 16 

𝑥1 + 𝑋2 ≤ 6                                                   

𝑋1, 𝑋2 ≥ 0 

 

 

 ه
ه
ع
 غ
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5- Duality in Linear Programming  
         

   For every L.P. problem there is a related unique L.P. problem (another linear programming 

The given original programme is called the primal programme (P). This programme can be 
rewritten by transposing (reversing) the rows and columns of the algebraic statement of the 
problem. Inverting the pergramme in this way results in dual programme (D). The variables 
of dual programme are known as dual variables or shadow prices of the various resources. A 
solution to the dual programme may be found in a manner similar to that used for the 
primal. The two programmes have very closely related properties so that optimal solution of 
the dual problem gives complete information about the optimal solution of the primal 
problem and vice versa.                                                                                                                            

    Duality is an extremely important and interesting feature of linear programming. The 
various aspects of this property are                                                                                                        
 (1)If the primal problem contains a large number of rows (constraints) and smaller number 
of columns (variables), the computational procedure can be considerably reduced by 
converting it into dual and then solving it. Hence it offers an advantage in many applications. 

(2) It gives additional information as to how the optimal solution changes as a result of the 
changes in the coefficients and the formulation of the problem. This form the basis of post 
optimality or sensitivity  analysis. 

(3) Duality in linear programming has certain far reaching consequence of economic nature. 
This can help managers answer questions about alternative courses of action and their 
relative values. 

(4) Calculation of the dual checks the accuracy of the primal solution. 
(5) Duality in linear programming shows that each linear programme is equivalent to a two 
person zero-sum game. This indicate that fairly close relationships exist between linear 
programming and the theory of games.  

(6) Duality is not restricted to linear programming problems only but finds application in 
economics, physics and other fields. In economics it is used in the formulation of input and 
output systems. In physics it is used in the series circuit and parallel circuit theory.  

(7) Economics interpretation of the dual helps the management in making future decisions. 
(8) Duality is used to solve L.P. problems(by the dual simplex method) in which the initial 
solution is infeasible. 

(9) The solution of the dual problem can be used by the decision-maker for planning or 
augmenting (increasing) the resources. 
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5-2. Artificial Variable Technique  

5-2-1. Two Phase Method  
   Linear programming problems, in which constraints may also have ′ ≥′ and '= ′ signs after 
ensuring that all 𝒃𝒊 are ≥ 𝟎, are considered in this section . In such problems, basis matrix is 
not obtained as an identity matrix in the starting simplex table, therefore we introduce a 
new type of variable, called, the artificial variable. These variables fictitious and can not 
have any physical meaning. The artificial variable technique is merely a device to get the 
starting basic feasible solution, so that simplex procedure may be adopted as usual until the 
optimal solution is obtained. Artificial variable can be eliminated from the simplex table as 
and when the become zero (non-basic). The process of eliminating artificial variables is 
performed in phase 1 of the solution, and phase 2 is used to get an optimal solution. Since 
the solution of the LP problem is completed in two phases, it is called ' two phase simplex 
method. 

Remarks. 
1. The objective of phase 1 is to search for a basic feasible solution to the given problem it 
ends up either giving a basic feasible solution or indicating that the given L.P. problem has 
no feasible solution at all. 

2. The basic feasible solution at the end of phase 1 provides a starting basic feasible solution 
for the given L.P. problem. Phase 2 is then just the application of simplex method to move 
towards optimality. 

3. In phase 2, care must be taken to ensure that an artificial variable is never allowed to 
become positive, if were present in the basis. Moreover, some artificial variable happens to 
leave the basis, its column must be deleted from the simplex table altogether.                    

                        

5.2-2. Alternative Approach of Two-Phase simplex method  
The two phase simplex method is used to solve a given problem in which some artificial 
variables are involved. The solution is obtained in two phases as follows : 
Phase 1. In this phase, the simplex method is applied to a specially constructed auxiliary 
linear programming problem leading to a  final simplex table containing a basic feasible 
solution to the original problem.  

Step 1. Assign a cost −𝟏 to each artificial variable and a cost 𝟎 to all other variables (in place 
of their original cost) in the objective function. 

Step 2. Construct the auxiliary linear programming problem in which the new objective 
function 𝑍′ is to be maximized subject to the given set of constraints. 

Step 3. Solve the auxiliary problem by simplex method until either of following three 
possibilities do arise :  

(a)𝑀𝑎𝑥 𝑍∗ < 0 and at least one artificial vector appear in the optimum basis at a positive 
level. In this case given problem does not possess any feasible solution. 

(b) 𝑀𝑎𝑥 𝑍∗ = 0 and at least one artificial vector appears in the optimum basis at zero level. 
In this case proceed to phase 2.  

(c) 𝑀𝑎𝑥 𝑍∗ = 0 and no artificial vector appears in the optimum basis. In this case also 
proceed to phase 2. 
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Phase 2: Now assign the actual cost to the variables in the objective function and a zero 

cost to every artificial variable that appear in the basis at the zero level. This new objective 
function is now maximized by simplex method subject to given constraints. That is, simplex 
method is applied to the modified simplex table obtained at the end of phase 1, until an 
optimum basic feasible solution (if exists) has been attained. The artificial variables which 
are non-basic at the end of phase 1 are removed.  

Example 1. Use two phase method to solve the problem: 

𝑀𝑖𝑛 𝑍 = 𝑋1 − 2𝑋2 − 3𝑋3 
Subject to the constraints              
−2𝑋1 + 𝑋2 + 3𝑋3 = 2 
2𝑋1 + 3𝑋2 + 4𝑋3 = 1 

𝑋1, 𝑋2, 𝑋3 ≥ 0 
Solution. First convert the objective function into maximization form: 

𝑀𝑎𝑥 𝑍′ = −𝑋1 + 2𝑋2 + 3𝑋3, Where 𝑍′ = −𝑍          

Introducing the artificial variables 𝐴1 ≥ 0 𝑎𝑛𝑑 𝐴2 ≥ 0, the constraints of the given problem 
become,  

−2𝑋1 + 𝑋2 + 3𝑋3 + 𝐴1 = 2 
2𝑋1 + 3𝑋2 + 4𝑋3 + 𝐴2 = 1 

𝑋1, 𝑋2, 𝑋3, 𝐴1, 𝐴2 ≥ 0 
Phase 1. Auxiliary L.P. problem is 
                                       𝑀 𝑎𝑥 𝑍′∗ = −0𝑋1 + 0𝑋2 + 0𝑋3 − 1𝐴1 − 1𝐴2         

Subject to the constraints            
−2𝑋1 + 𝑋2 + 3𝑋3 + 𝐴1 = 2 
2𝑋1 + 3𝑋2 + 4𝑋3 + 𝐴2 = 1 

𝑋1, 𝑋2, 𝑋3, 𝐴1, 𝐴2 ≥ 0 
Let 𝑋1 = 𝑋2 = 𝑋3 = 0, then the initial basic feasible solution is 𝐴1 = 2, 𝐴2 = 1 
The following solution table is obtained for auxiliary problem 

 −1 −1 0 0 0 𝐶𝑗 

Min. Ratio 
𝑋𝐵

𝑋𝑘
⁄ 

𝐴2 𝐴1 𝑋3 𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic Variable 

2
3⁄  0 1 3 1 −2 2 −1 𝐴1 

1
4⁄ ← 1 0 [𝟒] 3 2 1 −1 𝐴2 

← ∆𝑗 0 0 −7∗ 
↑ 

−4 0 𝑍′∗ = −3 𝑋1 = 𝑋2 = 𝑋3
= 0 

 −3 4⁄  1 0 −5 4⁄  −7 2⁄  5
4⁄  −1 𝐴1 

 1
4⁄  0 1 3

4⁄  1
2⁄  1

4⁄  0 𝑋3 

← ∆𝑗≥ 0 3
4⁄  0 0 5

4⁄  7
5⁄  𝑍′∗ = −5 4⁄   

Since  all ∆𝑗≥ 0, an optimal basic feasible solution to the auxiliary L.P.P. has been attained. 

But at the same time 𝑀𝑎𝑥 𝑍′∗ is negative and the artificial variable 𝐴1 appears in the basic 
solution at a positive level. Hence the original problem does not possess any feasible 
solution. Here there is no need to enter Phase 2. 
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Example 1. Use two phase method to solve the problem: 

𝑀𝑖𝑛 𝑍 =
15

2
𝑋1 − 3𝑋2 

Subject to the constraints                                                               

3𝑋1 − 𝑋2 − 𝑋3 ≥ 3 
𝑋1 − 𝑋2 + 𝑋3 ≥ 2 
𝑋1, 𝑋2, 𝑋3 ≥ 0 

Solution. Convert the objective function into maximization form: 

𝑀𝑎𝑥 𝑍′ = −
15

2
𝑋1 + 3𝑋2. 

Introducing the surplus variables 𝑆1 ≥ 0, 𝑆2 ≥ 0 𝑎𝑛𝑑 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝐴1 ≥ 0, 𝐴2 ≥ 0, 

the constraints of the given problem become  

3𝑋1 − 𝑋2 − 𝑋3 − 𝑆1 + 𝐴1 = 3 
𝑋1 − 𝑋2 + 𝑋3 − 𝑆2 + 𝐴2 = 2 
𝑋1, 𝑋2, 𝑋3, 𝑆1, 𝑆2, 𝐴1, 𝐴2 ≥ 0 

Phase 1. Assigning a cost −1 to artificial variables 𝐴1 𝑎𝑛𝑑 𝐴2 and cost  0 to all other 
variables, the new objective function for auxiliary problem becomes: 

𝑀𝑎𝑥 𝑍′∗ = 0𝑋1 + 0𝑋2 + 0𝑋3 + 0𝑆1 + 0𝑆2 − 1𝐴1 − 1𝐴2 
Subject to the constraints                                                                   

3𝑋1 − 𝑋2 − 𝑋3 − 𝑆1 + 𝐴1 = 3 
𝑋1 − 𝑋2 + 𝑋3 − 𝑆2 + 𝐴2 = 2 
𝑋1, 𝑋2, 𝑋3, 𝑆1, 𝑆2, 𝐴1, 𝐴2 ≥ 0 

Now apply simplex method in usual manner, 
 −1 −1 0 0 0 0 0 𝐶𝑗 

Min. 
Ratio 
𝑋𝐵

𝑋𝑘
⁄ 

𝐴2 𝐴1 𝑆1 𝑆1 𝑋3 𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
Variables  

3
3⁄ ← 0 1 0 −1 −1 −1 [𝟑] 3 −1 𝐴1 

2
1⁄  1 0 −1 0 1 −1 1 2 −1 𝐴2 

← ∆𝑗 0 0 1 1 0 2 −4∗ 
↑ 

𝑍′∗ = −5  

− 0 1
3⁄  0 −1 3⁄  −1 3⁄  −1 3⁄  1 1 0 𝑋1 

3
4⁄  1 1

3⁄  −1 1
3⁄  [𝟒 𝟑⁄ ] −2 3⁄  0 1 −1 𝐴2 

← ∆𝑗 0 2
3⁄  1 −1 3⁄  −4 3⁄

∗

↑ 

2
3⁄  0 𝑍′∗ = −1  

 1
4⁄  1

4⁄  −1 4⁄  −1 4⁄  0 −1 2⁄  1 5
4⁄  0 𝑋1 

 3
4⁄  −1 4⁄  −3 4⁄  1

4⁄  1 −1 2⁄  0 3
4⁄  0 𝑋3 

← ∆𝑗
≥ 0 

1 1 0 0 0 0 0 𝑍′∗ = 0  
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Since All ∆𝑗≥ 0 and no artificial variable appears in the basic, an optimal solution to the 

auxiliary problem has been attained. 

Phase 2. In this phase now consider the actual costs associated with original variables, the 

objective function thus becomes 𝑀𝑎𝑥 𝑍′ == −
15

2
𝑋1 + 3𝑋2 + 0𝑆1 + 0𝑆2. 

Now apply simplex method in the usual manner.  
 

 0 0 0 0 0 𝐶𝑗 

Min. 
Ratio 
𝑋𝐵

𝑋𝑘
⁄ 

𝑆2 𝑆1 𝑋3 𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

 −1 4⁄  −1 4⁄  0 −1 2⁄  1 5
4⁄  −15 2⁄  𝑋1 

 −3 4⁄  1
4⁄  1 −1 2⁄  0 3

4⁄  0 𝑋3 

← ∆𝑗
≥ 0 

15
8⁄  15

8⁄  0 3
4⁄  0 𝑍′ = −75 8⁄   

Since all ∆𝑗≥ 0, an optimal basic feasible solution has been attained. 

Hence optimal solution is : 𝑋1 =
5
4⁄ , 𝑋2 = 0,   𝑋3 = 

3
4⁄  , 𝑀𝑖𝑛 𝑍 = 75 8⁄   

Homework. Solve the problem by two phases method : 
𝑀𝑖𝑛 𝑍 = 𝑋1 + 𝑋2 

Subject to the constraints                         (1)                                        
2𝑋1 + 𝑋2 ≥ 4 
𝑋1 + 7𝑋2 ≥ 7 
𝑋1, 𝑋2 ≥ 0 

 

(2)          
𝑀𝑎𝑥  𝑍 = 5𝑋1 + 8𝑋2 

Subject to the constraints                                                               
3𝑋1 + 2𝑋2 ≥ 3 
𝑋1 + 4𝑋2 ≥ 4 
𝑋1 + 𝑋2 ≤ 5 
𝑋1, 𝑋2 ≥ 0 

       (3) 
𝑀𝑎𝑥  𝑍 = 3𝑋1 − 𝑋2 

Subject to the constraints                                                               
2𝑋1 + 𝑋2 ≥ 2 
𝑋1 + 3𝑋2 ≤ 4 

𝑋2 ≤ 4 

𝑋1, 𝑋2 
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6-1. Dual problem when primal is in canonical form 
The general programming problem in canonical form as discussed before: 

𝑀𝑎𝑥 𝑍 = 𝐶1𝑋1 +…+ 𝐶2𝑋2 +⋯+ 𝐶𝑛𝑋𝑛 
S.t.       

𝑎11𝑋1 + 𝑎12𝑋2 + 𝑎13𝑋3 + …+ 𝑎1𝑛𝑋𝑛 ≤ 𝑏1 
𝑎21𝑋2 + 𝑎22𝑋2 + 𝑎23𝑋3 + …+ 𝑎2𝑛𝑋𝑛 ≤ 𝑏2                                       (1)                                         

                             ⋮                ⋮              ⋮                      ⋮               ⋮                        
                                    𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 + 𝑎𝑚3𝑋3 + …+ 𝑎𝑚𝑛𝑋𝑛 ≤ 𝑏𝑚 
Where 

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 ≥ 0 
 If the above problem is referred to as  primal, then its associated dual will be  

 

𝑀𝑖𝑛 𝑊 = 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3 +⋯+ 𝑏𝑚𝑌𝑚 

S.t. 

𝑎11𝑌1 + 𝑎21𝑌2 + 𝑎31𝑌3 + …+ 𝑎𝑚1𝑌𝑚 ≥ 𝐶1 

𝑎12𝑌1 + 𝑎22𝑌2 + 𝑎32𝑌3 + …+ 𝑎𝑚2𝑌𝑚 ≥ 𝐶2                               (2)                 

                             ⋮                ⋮              ⋮                      ⋮               ⋮                        

                            𝑎1𝑛𝑌1 + 𝑎2𝑛𝑌2 + 𝑎3𝑛𝑌3 + …+ 𝑎𝑚𝑛𝑌𝑚 ≥ 𝐶𝑛    

Where the dual variables    𝑌1, 𝑌2, 𝑌3, … , 𝑌𝑚 ≥ 0                                                 

Equations (1) and (2) are called symmetric primal –dual pairs. 

The above pair of programs can be written as  

                   Primal                                                                      Dual   

       𝑀𝑎𝑧 𝑍 = ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                       𝑀𝑖𝑛 𝑊 = ∑ 𝑏𝑖𝑌𝑖

𝑚
𝑖=1               

         Subject to                                                                                Subject to                    

     ∑ 𝑎𝑖𝑗𝑋𝑗 ≤ 𝑏𝑖 ,
𝑛
𝑗=1   i=1,2,3, …,m,                                  ∑ 𝑎𝑖𝑗𝑌𝑖 ≥ 𝐶𝑗

𝑚
𝑖=1 ,  𝑗 = 1,2,3, … , 𝑛,  

  Where 𝑋𝑗 ≥ 0, 𝑗 = 1,2,3, … , 𝑛.                                    where   𝑌𝑖 ≥ 0, 𝑖 = 1,2,3,… ,𝑚. 

         

From above two programs, the following points are clear: 

(1)If the primal contains 𝑛 variables and 𝑚 constraints, the dual will contains 𝑚 
variables and 𝑛 constraints.                  

(2) the maximization problem in the primal becomes the minimization problem in the dual 
and vice versa. 

(3) The maximization problem has (≤) constraints while the minimization problem has (≥) 

Constraints. 

(4) Constraints of (≤) type  in the primal becomes (≥) 𝑡𝑦𝑝𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑢𝑎𝑙 𝑎𝑛𝑑 vce versa. 

(5) The coefficient matrix of the constraints of the dual is the transpose of the primal. 

(6) A new set of variables appear in the dual. 

(7) The constants 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛 in the objective function of the primal appear in the 
constraints of the dual. 
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(8) The constants 𝑏1 , 𝑏2 , 𝑏3, … , 𝑏𝑚 in the constraints of the primal appear in the objective 
function of the dual. 
(9) The variables in the both problems are non-negative. 
The constraints relationships of the primal and dual can be represented in a single table as 
follows : 

 𝑿𝒏 ⋯ 𝑿𝟑 𝑿𝟐 𝑿𝟏  

≤ 𝑏1 𝑎1𝑛  ⋯ 𝑎13 𝑎12 𝑎11 𝒀𝟏 

≤ 𝑏2    𝑎2𝑛 ⋯  𝑎23 𝑎22 𝑎21 𝒀𝟐 

≤ 𝑏3 𝑎3𝑛 ⋯ 𝑎33 𝑎32 𝑎31 𝒀𝟑 

⋮ ⋮  ⋮ ⋮  ⋮  ⋮  ⋮ 

≤ 𝑏𝑚 𝑎𝑚𝑛 ⋯  𝑎𝑚3 𝑎𝑚2 𝑎𝑚1 𝒀𝒎 

 ≥ 𝐶𝑛 ⋮ ≥ 𝐶3 ≥ 𝐶2 ≥ 𝐶1  

 
Example 1: Construct the dual to the primal problem 

𝑀𝑎𝑥 𝑍 =  3𝑋1 + 5𝑋2 
S.t.               

2𝑋1 + 5𝑋2 ≤ 50 

3𝑋1 + 2𝑋2 ≤ 35 

5𝑋1 − 3𝑋2 ≤ 10 

𝑋2 ≤ 20 

    Where       𝑋1, 𝑋2 ≥ 0                                          

Solution: Let 𝑌1 , 𝑌2 𝑌3 𝑎𝑛𝑑 𝑌4 be the corresponding dual variables, then the dual problem is 
given by                        𝑀𝑎𝑛 𝑊 = 50𝑌1 + 35𝑌2 + 10𝑌3 + 20𝑌4 

S.t.                   
2𝑌1 + 3𝑌2 + 5𝑌3 ≥ 3 

6𝑌1 + 2𝑌2 − 𝑌3 + 𝑌4 ≥ 5 
Where                                        𝑌1 , 𝑌2 , 𝑌3 , 𝑌4 ≥ 0                                                                   

                                                      

Remark: As the dual problem has the lesser number of constraints than the primal (2 

instead of 4), it requires lesser work and effort to solve it. This follows from the fact that the 
computational difficulty in the linear programming problem is mainly associated with the 
number of constraints rather than number of variables. 
Example 2: construct the dual of the problem  

𝑀𝑖𝑛 𝑍 = 3𝑋1 − 2𝑋2 + 4𝑋3 
Subject to the constraint  

3𝑋1 + 5𝑋2 + 4𝑋3 ≥ 7 

6𝑋1 + 𝑋2 + 3𝑋3 ≥ 4 
7𝑋1 − 2𝑋2 − 𝑋3 ≤ 10 
𝑋1 − 2𝑋2 + 5𝑋3 ≥ 3 
4𝑋1 + 7𝑋2 − 2𝑋3 ≥ 2 

𝑋1 , 𝑋2 , 𝑋3 ≥ 0 
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Solution : As the given problem of minimization, all constraints should be of ≥ 𝑡𝑦𝑝𝑒. 
Multiplying the third constraints by −1 on both sides, we get 

−7𝑋1 + 2𝑋2 + 𝑋3 ≥ −10. 
The dual of given problem will be  

𝑀𝑎𝑥 𝑊 = 7𝑌1 + 4𝑌2 − 10𝑌3 + 3𝑌4 + 𝑌5 
Subject to                     

3𝑌1 + 6𝑌2 − 7𝑌3 + 𝑌4 + 4𝑌5 ≤ 3 
3𝑌1 + 6𝑌2 − 7𝑌3 + 𝑌4 + 4𝑌5 ≤ −2 
3𝑌1 + 6𝑌2 − 7𝑌3 + 𝑌4 + 4𝑌5 ≤ 4 

𝑌1 , 𝑌2 , 𝑌3 , 𝑌4 , 𝑌5 ≥ 0 
Where 𝑌1 , 𝑌2 , 𝑌3 , 𝑌4  𝑎𝑛𝑑 𝑌5 are the dual variables associated with the first, second, third, 
fourth and fifth constraint respectively. 

 
Homework: construct the dual of the problem 
   
 (1)                                            𝑀𝑎𝑥 𝑍 = 3𝑋1 + 17𝑋2 + 9𝑋3 
                                                       Subject to constraints  

𝑋1 − 𝑋2 + 𝑋3 ≥ 3 

−3𝑋1 + 2𝑋3 ≤ 1 
𝑋1, 𝑋2, 𝑋3 ≥ 0 

(2) 
𝑀𝑎𝑥 𝑍 = 𝑋1 + 𝑋2 − 𝑋3 − 𝑋4 

Subject to constraints                                                       
3𝑋1 − 2𝑋2 + 𝑋3 + 5𝑋4 ≤ 18 

5𝑋1 + 6𝑋3 ≤ 20 
𝑋1 − 𝑋2 + 4𝑋3 + 𝑋4 ≥ 9 

𝑋1, 𝑋2, 𝑋3, 𝑋4 ≥ 0 
(3) 

𝑀𝑖𝑛 𝑍 =  2𝑋1 + 𝑋2 
Subject to constraints              

3𝑋1 + 𝑋2 ≥ 3 

4𝑋1 + 3𝑋2 ≥ 6 
𝑋1 + 2𝑋2 ≤ 3 

                                                                    𝑋1, 𝑋2 ≥ 0                                          
 

(4)   
𝑀𝑎𝑥 𝑍 =  2𝑋1 − 𝑋2 

Subject to constraints                                                                     
𝑋1 + 3𝑋2 = 7 

𝑋1 − 𝑋2 = 3 

                                                                    𝑋1, 𝑋2 ≥ 0                                          
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6-2.Duality and simplex method  

(The final simplex method table giving optimal solution of the primal also contains optimal 

solution of its dual in itself, and conversely. This is based on the 'Fundamental Duality 

theorem' which is related as follows:                                                                                            

(a) If either the primal or the dual problem has a finite optimal solution, then the other 

problem also has a finite optimal solution. Furthermore, the optimal values of the objective 

function in the both the problems are the same, this mean that, 𝑀𝑎𝑥𝑍 = 𝑀𝑖𝑛 𝑊 .                     

(b) If either problem has an unbounded optimal solution, then the other problem has no 

feasible solution at all.                                                                                                                  

(c) Both problem may be infeasible.                                                                                             

 

5-2-1. Comparison of solutions to the primal and its dual 
Example 3: Consider the following pair of dual problem : 

𝑀𝑎𝑥 𝑍 = 40𝑋1 + 50𝑋2                                                             𝑀𝑖𝑛 𝑊 = 3𝑌1 + 5𝑌2  
      Subject to                                                                                       subject to  

2𝑋1 + 3𝑋2 ≤ 3                                                                                  2𝑌1 + 8𝑌2 ≥ 40         
8𝑋1 + 4𝑋2 ≤ 5                                                                                  3𝑌1 + 4𝑌2 ≥ 50        
and   𝑋1 , 𝑋2 ≥ 0                                                                                      𝑌1 , 𝑌2 ≥ 0 

              

                       solution of dual 
Writing the problem in standard simplex  form : 
𝑀𝑎𝑥 𝑊′ = −3𝑌1 − 5𝑌2 + 0𝑆1 + 0𝑆2                 
where  𝑊′ = −𝑊                                                     

subject to 
2𝑌1 + 8𝑌2 − 𝑆1 + 𝐴1 = 40 
3𝑌1 + 4𝑌2 − 𝑆2 + 𝐴2 = 50 
𝑌1 , 𝑌2, 𝑆1, 𝑆2, 𝐴1, 𝐴2 ≥ 0 

                  Solution of primal      

Writing the problem in standard simplex 
form : 

𝑀𝑎𝑥 𝑍 = 40𝑋1 + 50𝑋2 + 𝟎𝐒𝟏 + 𝟎𝐒𝟐 

                                Subject to 
2𝑋1 + 3𝑋2 + 𝑆1 = 3 
8𝑋1 + 4𝑋2 + 𝑆2 = 5 
  𝑋1 , 𝑋2, 𝑆1 , 𝑆2 ≥ 0 

 

                          
First we start with primal form , let 𝑋1 = 𝑋2 = 0 this implies that the initial basic feasible 
solution is 𝑆1 = 3 𝑎𝑛𝑑 𝑆2 = 5 . Construct the simplex table 

  

0 0 50 40 𝐶𝑗 

Min Ratio 
𝑋𝐵

𝑋𝑘
⁄ 

 

 
Basis Matrix 

𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 
𝟑

𝟑
= 𝟏 𝑴𝒊𝒏 ← 

0 1 [𝟑] 2 3  0 𝑆1 

5

4
= 1

1

4
 

1 0 4 𝟖 5  0 𝑺𝟐 

∆𝑗= 𝑍𝑗 − 𝐶𝑗
= 𝐶𝐵𝑋𝑗 − 𝐶𝑗  

∆4
= 0 

∆3= 0 ∆𝟐
= −𝟓𝟎 
↑ 

∆1
= −40 
  

𝑍 = 𝐶𝐵𝑋𝐵 = 0  
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0 0 50 40 𝐶𝑗 

Min Ratio 
𝑋𝐵

𝑋𝑘
⁄ 

 

 
Basis Matrix 

𝑋2 𝑋1 𝑋𝐵 𝐶𝐵 Basic 
variables 

𝑆2 𝑆1 

1

2
3

=
3

2
 

0 1

3
 

1 2

3
 

1  50 𝑋2 

𝟏

𝟏𝟔
𝟑

=
𝟑

𝟏𝟔
 𝑴𝒊𝒏 ← 

1 
−
4

3
 

0 
[
𝟏𝟔

𝟑
] 

1 0 𝑺𝟐 

∆𝑗= 𝐶𝐵𝑋𝑗 − 𝐶𝑗  0 50

3
 

0 
−
𝟐𝟎

𝟑
 

↑ 

Z=𝐶𝐵𝑋𝐵=50 𝑋1 = 𝑆1 = 0 

 
−
1

8
 

1

2
 

𝟏 0 7

8 
 

50 𝑋2 

 3

16
 −

1

4
 

0 1 3

16
 

40 𝑿𝟏 

∆𝑗= 𝐶𝐵𝑋𝑗 − 𝐶𝑗  𝟓

𝟒
 

15 0 0 Z=𝐶𝐵𝑋𝐵=51.25 𝑆1 = 𝑆2 = 0 

 
Since all ∆𝑗 are positive, hence the optimal solution of the primal is given by  

𝑋1 =
3

16
  , 𝑋2 =

7

8
 , 𝑎𝑛𝑑 𝑍 = (

3

16
× 40) + (

7

8
× 50) = 51.25 

Now, we solve the dual problem to get the optimal solution which is same as the solution 
of primal problem. 
 Phase 1. Assigning a cost −1 to artificial variables 𝐴1 𝑎𝑛𝑑 𝐴2 and cost  0 to all other 
variables, the new objective function for auxiliary problem becomes: 

𝑀𝑎𝑥 𝑊′∗ = 0𝑌1 + 0𝑌2 + 0𝑆1 + 0𝑆2 − 1𝐴1 − 1𝐴2 
Subject to the constraints             

                                                       2𝑌1 + 8𝑌2 − 𝑆1 + 𝐴1 = 40 
3𝑌1 + 4𝑌2 − 𝑆2 + 𝐴2 = 50 
𝑌1 , 𝑌2, 𝑆1, 𝑆2, 𝐴1, 𝐴2 ≥ 0 

Let Y1 = Y2 = S1 = S2 = 0 this implies that the initial basic feasible solution is 𝐴1 = 40 and 
𝐴2 = 50  , Construct the simplex table. 

 −1 −1 0 0 0 0 𝐶𝑗 

Min. Ratio 
𝑌𝐵

𝑌𝑘
⁄  

𝐴2 𝐴1 𝑆2 𝑆1 𝑌2 𝑌1 𝑌𝐵 𝐶𝐵 Basic 
variables 

40
8⁄ = 5 ← 0 1 0 −1 [𝟖] 2 40 −1 𝐴1 

50
4⁄ = 12.5 1 0 −1 0 4 3 50 −1 𝐴2 

← ∆𝑗 0 0 1 1 −12∗  ↑ −5 𝑊′∗ = −90  

5

1
4

= 20 
0 1

8⁄  0 −1 8⁄  1 1
4⁄  5 0 𝑌2 

30
2⁄ = 15 ← 1 −1 2⁄  −1 1

2⁄  0 [𝟐] 30 −1 𝐴2 

 0 3
2⁄  1 −1 2⁄  0 −2∗ ↑ 𝑊′∗ = −30  

 −1 8⁄  3
16⁄  1

8⁄  −3 16⁄  1 0 5
4⁄  0 𝑌2 

 1
2⁄  −1 4⁄  −1 2⁄  1

4⁄  0 1 15 0 𝑌1 

← ∆𝑗≥ 0 1 1 0 0 0 0 𝑊′∗ = 0  



32 
Asst. Lecturer  Naser Oda Jassim 

 Since All ∆𝑗≥ 0 and no artificial variable appears in the basic, an optimal solution to the 

auxiliary problem has been attained. 
Phase 2. In this phase now consider the actual costs associated with original variables, the 
objective function thus becomes 𝑀𝑎𝑥 𝑊′ = −3𝑌1 − 5𝑌2 + 0𝑆1 + 0𝑆2. 
Now apply simplex method in the usual manner. 

 
   −5 −3 𝐶𝑗 

Min. Ratio 
𝑌𝐵

𝑌𝑘
⁄  

𝑆2 𝑆1 𝑌2 𝑌1 𝑌𝐵 𝐶𝐵 Basic 
variables 

 1
8⁄  −3 16⁄  1 0 5

4⁄  −5 𝑌2 

 −1 2⁄  1
4⁄  0 1 15 −3 𝑌1 

← ∆𝑗≥ 0 𝟕
𝟖⁄  𝟑

𝟏𝟔⁄  0 0 𝑊′ = −51.25  

 
Since all ∆𝑗≥ 0, an optimal basic feasible solution has been attained. 

Hence optimal solution of the dual is given by   : 𝑌1 = 15,   𝑌2 =
5
4⁄ ,   𝑀𝑖𝑛 𝑍 = 51.25  

Conclusion. From above comparison, it is concluded that the solution to a primal problem 

of linear programming can always provide a solution to its dual.  
 

Homework: Use duality to solve : 
1. 

𝑀𝑖𝑛 𝑍 = 3𝑋1 + 𝑋2                                  

Subject to constraints                          
𝑋1 + 𝑋2 ≥ 1 
2𝑋1 + 3𝑋2 ≥ 2 
𝑋1, 𝑋2 ≥ 0 

 
2.                                         𝑀𝑖𝑛 𝑍 = 2500𝑋1 + 3000𝑋2         

Subject to constraints                                                        
𝑋1 ≥ 30                                                            
𝑋2 ≥ 20                                                              
𝑋1 + 𝑋2 ≥ 60                                                                                               
𝑋1, 𝑋2 ≥ 0                            

                                
3.                                           𝑀𝑖𝑛 𝑍 = 𝑋1 − 𝑋2 

Subject to                            

2𝑋1 + 𝑋2 ≥ 2                           
−𝑋1 − 𝑋2 ≥ 1                            
𝑋1, 𝑋2 ≥ 0                         
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7. The Transportation problem 

  

Definition. The transportation Problem is to transport various amounts of a single 

homogeneous commodity, that are initially stored at various origins, to different destinations 

in such a way that the total transportation cost is a minimum.                                                     

   For example, a tyre manufacturing concern has m factories located in m different cities. 

The total supply potential of manufactured product is absorbed by n retail dealers in n 

different cities of the country. Then, transportation problem is to determine the transportation 

schedule that minimizes the total cost of transporting tyres from various factories locations to 

various retail dealers.                                                                                                                    

       

7.1. Mathematical Formulation  
Let there be m origins, 𝒊𝒕𝒉  origin possessing 𝒂𝒊 units of a certain product, whereas there are 

n destinations (n may or may not be equal to m )with destination j requiring 𝒃𝒋 units. Costs of 

shipping of an item from each of m origins (sources ) to each of the n destinations are known 

either directly or indirectly in terms of mileage, shipping hours, etc. let 𝒄𝒊𝒋 be the cost of 

shipping one unit product from 𝒊𝒕𝒉 origin (source) to 𝒋𝒕𝒉 destination, and '𝒙𝒊𝒋' be the amount 

to be shipped from the 𝒊𝒕𝒉 origin to 𝒋𝒕𝒉 destination.                                                                    

 It is also assumed that total availability ∑𝑎𝑖 satisfies the total requirements ∑𝑏𝑗, that is,  

∑𝑎𝑖 = ∑𝑏𝑗   (𝑖 = 1, 2,… ,𝑚; 𝑗 = 1, 2,… , 𝑛)                                                                   (1)  

(In case  ∑𝑎𝑖 ≠ ∑𝑏𝑗  some manipulation is required to make ∑𝑎𝑖 = ∑𝑏𝑗 , which will be 

shown later). The problem now is to determine non-negative (≥ 0) values of '𝑥𝑖𝑗 ' satisfying 

both, availability constraints: 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 𝑎𝑖        for 𝑖 = 1, 2,… ,𝑚                                                                                  (2)   

As well as the requirement constraints   

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 𝑏𝑗         for 𝑗 = 1, 2,… , 𝑛                                                                                    (3) 

And minimizing the total cost of transportation (shipping) 

𝑍 = ∑  𝑚
𝑖=1 ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 𝑐𝑖𝑗       (objective function).                                                               (4)    

Remark:                                                                                                                                  
1.constraints equations (2), (3) and the objective function (4) are all linear in 𝑥𝑖𝑗, so it may 

be looked like a linear programming problem. This special type of linear programming 
problem will be called a transportation problem(T.P.)                                                                       
2. By requiring strict inequalities 𝑎𝑖 > 0  𝑎𝑛𝑑 𝑏𝑗 > 0 we are not restricting anything. Since 

all 𝑥𝑖𝑗 ≥ 0, it follows that each 𝑎𝑖 ≥ 0  𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑏𝑖 ≥ 0. Moreover, any 𝑎𝑘 = 0
 
⇒ 𝑥𝑘𝑗 = 0  

and thus can be eliminated from the problem.                                                               

 

7.2. Feasible Solution, Basic Feasible Solution, And Optimum Solution 
The terms feasible solution, basic feasible solution and optimum solution may be formally 

defined with reference to the transportation problem (T.P.) as follows:                                       

1.Feasible solution (FS). A set of non-negative individual allocations (𝑥𝑖𝑗 ≥ 0) which 

simultaneously removes deficiencies is called a feasible solution.                                    



34 
Asst. Lecturer  Naser Oda Jassim 

2. Basic feasible solution (BFS). A feasible solution to a m-origin, n-destination problem is 

said to be basic if the number of positive allocations are 𝒎+𝒏 − 𝟏, that is, one less than sum 

of rows and columns.                                                                                                                     

If the number of allocations in a basic feasible solution are less than 𝒎+𝒏− 𝟏, it is called 

degenerate BFS (otherwise, non-degenerate BFS).                                                                       

3. Optimal Solution. A feasible solution (not necessarily basic) is said to be optimal if it 

minimizes the total transportation cost.                                                                                         

  

7.2.1. Existence of Feasible Solution 

  
Theorem 7.1. (Existence of Feasible Solution). A necessary and sufficient condition for the 

existence of feasible solution of a transportation problem is  ∑𝑎𝑖 = ∑𝑏𝑗   (𝑖 = 1, 2,… ,𝑚; 𝑗 =

1, 2,… , 𝑛).                                                                                                                                      

 

7.2.2. Basic Feasible Solution of Transportation Problem 

 
It has been observed that a transportation problem is a special case of a linear programming 

problem. So a basic feasible solution of a transportation problem has the same definition as 

earlier given for linear programming problem. However we observed that in the case of a 

transportation problem, there are only 𝒎+𝒏− 𝟏 basic variables out of 𝑚𝑛 unknown. This 

happens due to redundancy in the constraints of the transportation problem. This can be easily 

justified by the following theorem.                                                                                               

  

Theorem 7.2. 

 The number of basic variable in a transportation problem are at the most 𝒎+𝒏 − 𝟏. 
 

Remark: 

 It is concluded that a basic feasible solution will consist of at most 𝒎+𝒏 − 𝟏 positive 
variables, others being zero. In the degenerate case, some of the basic variables will also be 
zero, that is, the number of positive variables will now become less than 𝒎+𝒏 − 𝟏. By 
fundamental theorem of linear programing, one of the basic feasible solution will be the 
optimal solution.                                                                                                                                            

 

7.2.3 Existence of Optimal Solution 
Theorem 7.3. (Existence of Optimal Solution). There always exists an optimal solution to a 
balanced transportation problem. 

 

7.3. Tabular representation  
Suppose there are m factories and n warehouse. The transportation problem is usually 
represented in a tabular form. Calculating are made directly on the transportation arrays 
which give the current trial solution. 
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Factory 
Capacity  

𝑊𝑛 ⋯ 𝑊𝑗 ⋯ 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

𝑎1  
 

𝑋1𝑛 

 
⋯ 

 
 
𝑋1𝑗 

 

⋯ 
 
 

𝑋12 

 

 
𝑋11 

𝐹1 

𝑎2  
 

𝑋2𝑛 

 

⋯ 

 
 
𝑋2𝑗 

 

⋯ 
 
 

𝑋22 

 
 

𝑋21 

𝐹2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑎𝑖  
 

𝑋𝑖𝑛 

⋯  
 
𝑋𝑖𝑗 

⋯  
 

𝑋𝑖2 

 

 
𝑋𝑖1 

𝐹𝑖 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ 

𝑎𝑚  
 

𝑋𝑚𝑛 

 

⋯ 

 
 
𝑋𝑚𝑗 

 
⋯ 

 
 

𝑋𝑚2 

 
 

𝑋𝑚1 

𝐹𝑚 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

𝑏𝑛 ⋯ 𝑏𝑗 ⋯ 𝑏2 𝑏1 Warehouse 
requirements 

 

Remark: The product 𝑋𝑖𝑗(𝐶𝑖𝑗) gives the net cost of shipping 𝑋𝑖𝑗  unit from factory 𝐹𝑖 to 

warehouse 𝑊𝑗. 

 

7.4. Method  for Initial Basic Feasible Solution to a transportation problems 
Some simple methods are described here to obtain the initial basic feasible solution of the 
transportation problem. 

1.North-West Corner Rule  

2. Least Cost Method  

3. Vogel's Approximation Method  

 

1.  North-West Corner Rule 
Step1. The first assignment is made in the cell occupying the upper left-hand (north-west) 
corner of the transportation table. The maximum possible amount is allocated there. That is, 
𝑋11 = min (𝑎1, 𝑏1). This value of 𝑋11 is then entered in the cell (1,1) of the transportation 
table. 

Step2. (a) If 𝑏1 > 𝑎1, move vertically downwards to the second row and make the second 
allocation amount 𝑋21 = min (𝑎1, 𝑏1 − 𝑋11) in the cell (2,1) 

(b) If 𝑏1 < 𝑎1, move horizontally right-side to the second column and make the second 
allocation of amount 𝑋12 = min (𝑎1 − 𝑋11, 𝑏2) in the cell (1,2). 

(c ) If 𝑏1 = 𝑏2, there is a tie for the second allocation. One can make the second allocation of 
magnitude 𝑋12 = min(𝑎1 − 𝑎1, 𝑏2) = 0 in the cell (1,2) or 𝑋21 = min (𝑎2, 𝑏1 − 𝑏1) in the 
cell (2,1). 

 

𝐶12 

 

𝐶21 

𝐶𝑖1 𝐶𝑖𝑗 

𝐶𝑚1 𝐶𝑚𝑗 𝐶𝑚2 

𝐶𝑖𝑛 

𝐶11 

 

𝐶1𝑛 𝐶1𝑗 

𝐶22 𝐶2𝑗 𝐶2𝑛 

𝐶𝑖2 

𝐶𝑚𝑛 
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Step3. Start from the new north-west corner of the transportation table and repeat steps 1 
and 2 until all the requirements are satisfied.  
Example 1. Use North-West Corner Rule to find the initial basic feasible solution of the 
following transportation problem. 

 
Factory 
Capacity  

𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

15  
 
 

 
 
 

 
 
 

 
 
 

𝐹1 

25  
 
 

 
 
 

 
 
 

 
 
 

𝐹2 

5  
 
 

 
 
 

 
 
 

 
 
 

𝐹3 

 
 

10 15 15 5 Warehouse 
requirements 

 
Solution. Sum of availabilities ∑𝑎𝑖𝑗 = 15 + 25 + 5 = 45 

Sum of requirements  ∑𝑏𝑗 = 5 + 15 + 15 + 10 = 45 

Since     ∑ 𝑎𝑖 = ∑𝑏𝑗, the necessary and sufficient condition is satisfied and hence there 

exists a solution to the given transportation problem. 
We see that the number of occupying cells are 𝑚 + 𝑛 − 1 = 3 + 4 − 1 = 6, 
That is , the basic variables are 6 only and non-basic variables are 6 out of 12 variables. 
𝑋11 = min(𝑎1, 𝑏1) = min(5,15) = 5 , remove first column and move horizontally  
𝑋12 = min(𝑎1 − 𝑋11 , 𝑏2) = (10 , 15) = 10 , remove first row 
𝑋22 = min(𝑎2 , 𝑏2 − 𝑋12) = (25,15 − 10) = (25,5) = 5 , remove second column 
𝑋23 = min(𝑎2 − 𝑋22 , 𝑏3) = (25 − 5 , 15) = 15 , remove  third column 
𝑋24 = min (𝑎2 − (𝑥22 + 𝑋23 , 𝑏4) = (25 − 20 , 10) = 5 , removed third row  

         𝑋34 = 5 

  
Factory 
Capacity  

𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

15  
 

𝑋14 = 0 

 
 

𝑋13 = 0 

 
 

𝑋12 = 10 

 

 
𝑋11 = 5 

𝐹1 

25  
 

𝑋24 = 5 

 
 

𝑋23 = 15 

 
 

𝑋22 = 5 

 
 

𝑋21 = 0 

𝐹2 

5  
 

𝑋34 = 5 

 
 

𝑋33 = 0 

 
 

𝑋32 = 0 

 

 
𝑋31 = 0 

𝐹3 

45 

 
45 

 

10 15 15 5 Warehouse 
requirements 

  20 0 

 

12 

10 

 

11 

7 9 20 

0 16 18 14 

20 0 

 

12 

10 

 

11 

7 9 20 

0 16 18 14 
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Basic variables are 𝑋11 = 5  ,  𝑋12 = 10   , 𝑋22 = 5 , 𝑋23 = 15  ,    𝑋24 = 5 , 𝑋34 = 5 
Non-basic variables are 𝑋13 = 𝑋14 = 𝑋21 = 𝑋31 = 𝑋32 = 𝑋33 = 0 
The total cost to transportation is 𝑀𝑖𝑛 𝑍 = ∑  𝑛

𝑗=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑚
𝑖=1 

𝑍 = 5 × 10 + 10 × 0 + 5 ×× 7 + 15 × 9 + 5 × 20 + 5 × 18 = 410 
The number of occupying cells are  𝑚 + 𝑛 − 1 = 3 + 4 − 1 = 6 

Homework. Use North-West Corner Rule to find the initial basic feasible solution of the 

following transportation problem. 
1.  

Factory 
Capacity  

𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

10  
 

 

 
 
 

 
 
 

 
 
 

𝐹1 

5  
 
 

 
 
 

 
 
 

 
 
 

𝐹2 

15  
 
 

 
 
 

 
 
 

 
 
 

𝐹3 

 
 

7 8 10 5 Warehouse 
requirements 

 
2.  

Factory 
Capacity  

𝑊5 𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

100  
 
 

 
 
 

 
 
 

 
 

 

 

 
 

𝐹1 

125  
 

 

 
 
 

 
 

 

 
 
 

 
 
 

𝐹2 

150  
 

 

 
 

 

 
 

 

 
 

 

 

 
 

𝐹3 

 
 

90 10 70 60 75 Warehouse 
requirements 

 
 3.  

Productive 
Quantities   

3 2 1  

4  
 
 

 
 

 

 

 
 

1 

6  
 
 

 
 
 

 
 
 

2 

10  
 
 

 
 
 

 

 
 

3 

 
 

12 5 3 Demand 
Quantities  

20 0 

 

12 

10 

 

11 

7 9 20 

0 16 18 14 

28 27 

 

29 

37 

 

34 

32 32 27 

34 37 30 27 

30 

28 

30 

2 0 

 
3 

1 

 
5 4 

1 3 2 
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2. Least Cost Method  
Step1. Determine the smallest cost in the cost matrix of the transportation table. Let it be 
(𝐶𝑖𝑗). Allocate 𝑋𝑖𝑗 = min (𝑎𝑖  , 𝑏𝑗) in the cell (i , j).                                                                                 

 
Step2. (1) If 𝑋𝑖𝑗 = 𝑎𝑖,  cross-out the 𝑖𝑡ℎ row of the transportation table and decrease 

𝑏𝑗  𝑏𝑦 𝑎𝑖. Go to step 3. 

(2) If  𝑋𝑖𝑗 = 𝑏𝑗  , cross-out the 𝑗𝑡ℎ column of the transportation table and decrease 𝑎𝑖 by 𝑏𝑗. 

Go to step 3. 
(3) If 𝑋𝑖𝑗 = 𝑎𝑖 = 𝑏𝑗  , cross-out either the 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑜𝑟 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 but not both. 

 
Step3. Repeat steps 1 and 2 for the resulting reduced transportation table until all the 
requirements are satisfied. Whenever the minimum cost in not unique, make an arbitrary 
choice among the minima. 

 
Example2. Use north-west corner rule and least cost method to find the initial basic feasible 
solution of the following transportation problem and compare between the two methods.  

 
Supply  𝐷2 𝐷1  

60  
 
 

 

 
 

𝑆1 

40  
 
 

 
 
 

𝑆2 

70  
 
 

 

 
 

𝑆3 

 
 

65 105 Demand  

 
Solution.  
First, solve by north-west corner rule. 

sum of availabilities ∑𝑎𝑖𝑗 = 60 + 40 + 70 = 170 

Sum of requirements  ∑𝑏𝑗 = 105 + 65 = 170 

Since     ∑ 𝑎𝑖 = ∑𝑏𝑗, the necessary and sufficient condition is satisfied and hence there 

exists a solution to the given transportation problem. 
We see that the number of occupying cells are 𝑚 + 𝑛 − 1 = 3 + 2 − 1 = 4, 
That is , the basic variables are four only and non-basic variables are two out of six 
variables. 
𝑋11 = min(𝑎1, 𝑏1) = min(60,105) = 60 , remove first row and move vertically  
𝑋21 = min(𝑎2 , 𝑏1 − 𝑋11) = (40 , 105 − 60) = 40 , remove second row and remaining only 
15 in first column. 
𝑋31 = min(𝑎3 , 𝑏1 − (𝑋11 − 𝑋21) = (70,105 − 100) = (70,5) = 5 , remove first column 
𝑋32 = 65    
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supply  𝐷2 𝐷1  

60  
 

𝑋12 = 0 

 

 
𝑋11 = 60 

𝑆1 

40  
 

𝑋22 = 0 

 
 

𝑋21 = 40 

𝑆2 

70  
 

𝑋32 = 65 

 

 
𝑋31 =5 

𝑆3 

 
 

65 105 Demand  

Basic variables are   𝑋11 = 60   , 𝑋21 = 40 , 𝑋31 = 5   , 𝑋32 = 65 
Non-basic variables are = 𝑋12 = 𝑋22 = 0 
The total cost to transportation is 𝑀𝑖𝑛 𝑍 = ∑  𝑛

𝑗=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑚
𝑖=1 

𝑍 = 60 × 4 + 40 × 7 + 5 × 3 + 65 × 10 = 1185 
The number of occupying cells are  𝑚 + 𝑛 − 1 = 3 + 2 − 1 = 4 

-Second, solve by least cost method 
We choose the smallest cost in the matrix. It is in the cell (1 ,2).  

𝑿𝟏𝟐 = min(𝑎1 , 𝑏2) = (60 ,65) = 60, remove first row and remain only 5 in second column 
we choose the second smallest cost in the matrix. It is in the cell (3,1). 

𝑿𝟑𝟏 = min(𝑎3 , 𝑏1) = (70 , 105) = 70, remove third row and remain 35 in first column. 

We choose the third smallest cost in the matrix. It is in the cell (2,2). 
𝑿𝟐𝟐 = min(𝑎2 , 𝑏2) = (40 ,5) = 5 , remove second column  
The last cost remains in the cell (2 ,1)  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑋21 = 35 

 
Supply  𝐷2 𝐷1  

60  
 

𝑿𝟏𝟐= 𝟔𝟎 

 

 
𝑋11 = 0 

𝑆1 

40  
 

𝑋22 = 5 

 
 

𝑋21 = 35 

𝑆2 

70  
 

𝑋32 = 0 

 

 
𝑿𝟑𝟏 = 𝟕𝟎 

𝑆3 

170 
 

170 

65 105 Demand  

Basic variables are   𝑋12 = 60   , 𝑋21 = 35 , 𝑋22 = 5   , 𝑋31 = 70 

Non-basic variables are = 𝑋11 = 𝑋32 = 0 
The total cost to transportation is 𝑀𝑖𝑛 𝑍 = ∑  𝑛

𝑗=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑚
𝑖=1 

𝑍 = 60 × 2 + 5 × 5 + 35 × 7 + 70 × 3 = 600 
The number of occupying cells are  𝑚 + 𝑛 − 1 = 3 + 2 − 1 = 4 

We see that the cost in the least cost method is less than in the north-west corner method. 
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Homework. Use least cost method and north-west corner rule to find the initial basic 

feasible solution of the following transportation problem and compare between two 
solutions . 

Factory 
capacity    

𝐶 𝐵 𝐴  
             Branches  
Factories 

4  
 
 

 
 
 

 
 
 

1 

6  
 
 

 
 
 

 
 
 

2 

10  
 
 

 
 
 

 
 
 

3 

 
 

12 5 3 Demand each 
branch  

 

3. Vogel's Approximation Method 
 Step1. For each row of the transportation table identity the smallest and next-to-smallest 

Cost. Determine the difference between them for each row. These are called 'penalties'. Put 
them along side the transportation table by enclosing them in the parentheses against the 
respective rows. Similarly, compute these penalties for each column. 

Step2. Identify the row or column with the largest penalty among all the rows and columns. 

If a tie occurs, use any arbitrary tie breaking choice. Let the largest penalty correspond to 
𝑖𝑡ℎ row and let 𝐶𝑖𝑗  be the smallest cost in the 𝑖𝑡ℎ row. Allocate the largest possible amount 

𝑋𝑖𝑗 = min (𝑎𝑖 , 𝑏𝑗) in the cell (i, j) and cross-out the 𝑖𝑡ℎ row or the 𝑗𝑡ℎ column in the usual 

manner.  

Step3. Again compute the column and row penalties for the reduced transportation table  

and then go to step2. Repeat the procedure until all the requirements are satisfied. 
Remark. By saying ''cross-out a row or a column'' we shall mean that no cells from that row 
or column can be chosen for the basis entry at a later step. 

 
Example3. Use  Vogel's Approximation Method to find the initial basic feasible solution of 
the following transportation problem. 

 
supply   𝑫𝟐 𝑫𝟏  

           

 

60 
 

 
 

 

 

 
 

𝑆1 

40  
 
 

 
 
 

𝑆2 

70  
 
 

 

 
 

𝑆3 

170 

 170 
65 105 Demand  

2 0 
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 Solution. sum of availabilities ∑𝑎𝑖𝑗 = 60 + 40 + 70 = 170 

Sum of requirements  ∑𝑏𝑗 = 105 + 65 = 170 

Since     ∑ 𝑎𝑖 = ∑𝑏𝑗, the necessary and sufficient condition is satisfied and hence there 

exists a solution to the given transportation problem. 

 (1) Calculate the difference between the two smallest costs in each row and column in the 
given table.  

 
   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟐 𝑫𝟏  
           

 

(2) 60 
 

 
 

 

 

 
 

𝑆1 

(2) 40  
 
 

 
 
 

𝑆2 

(7) 70  
 
 

 
 
 

𝑆3 

170 
 170 

65 105 Demand  

  (3) (1) Difference between the smallest 
two costs (penalty) 

2. We choose the largest penalty among all the rows and columns which correspond to third 
row.  

3. We choose the smallest cost in the 𝒕𝒉𝒊𝒓𝒅 𝒓𝒐𝒘.  

The smallest cost is 3 which corresponds to 𝑋31, that is, 

𝑋31 = min(𝑎3 , 𝑏1) = (70 , 105) = 70, remove the third row and remaining only 35 in first 
column  

   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟐 𝑫𝟏  
           

 

(2) 60 
 

 
 
 

 

 
 

𝑆1 

(2) 40  
 
 

 
 
 

𝑆2 

(7)← 70  
 
 

 

 
𝑿𝟑𝟏 = 𝟕𝟎 

𝑆3 

170 
 170 

65 105 Demand  

  (3) (1) Difference between the smallest 
two costs (penalty) 

Again compute the column and row penalties for the reduced transportation table  and then 
go to step2. Repeat the procedure until all the requirements are satisfied. 

 l
k 
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   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟐 𝑫𝟏  
           

 

(2)← 60 
 

 
 

𝑋12
= 60 

 
 
 

𝑆1 

(2) 40  
 
 

 
 
 

𝑆2 

  65 105 Demand  

  (3) (3) Difference between the 
smallest two costs (penalty) 

𝑋12 = min(𝑎1, 𝑏1) = (60 , 65 ) = 60 , remove the first row and remaining only 5 in the first 
column. 

supply   𝑫𝟐 𝑫𝟏  
           

 

40  
 
 
𝑋22 = 5 

 
 
 
𝑋21 = 35 

𝑆2 

 

𝑋21 = 35 𝑎𝑛𝑑 𝑋22 = 5 
 

 We return to the basic transportation problem to distribute all the quantities in the cells for 
the origin problem.   

 
supply   𝑫𝟐 𝑫𝟏  

           

 

60 
 

 
 

𝑋12 = 60 

 
 
𝑋11 = 0 

𝑆1 

40  
 
𝑋22 = 5 

 
 

𝑋21 = 35 

𝑆2 

70  
 
𝑋32 = 0 

 
 
𝑋3170 

𝑆3 

170 
 170 

65 105 Demand  

 

Basic variables are   𝑋12 = 60   , 𝑋21 = 35 , 𝑋22 = 5   , 𝑋31 = 70 

Non-basic variables are = 𝑋11 = 𝑋32 = 0 

The total cost to transportation is 𝑀𝑖𝑛 𝑍 = ∑  𝑛
𝑗=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑚
𝑖=1 

𝑍 = 60 × 2 + 5 × 5 + 35 × 7 + 70 × 3 = 600 

The number of occupying cells are  𝑚 + 𝑛 − 1 = 3 + 2 − 1 = 4 
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Example3. Use  Vogel's Approximation Method to find the initial basic feasible solution of 
the following transportation problem. 

Factory 
Capacity  

𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

120  
 
 

 
 
 

 
 

 

 

 
 

𝐹1 

70  
 
 

 
 

 

 
 
 

 
 
 

𝐹2 

50  
 
 

 
 
 

 
 
 

 

 
 

𝐹3 

240 
 

240 

110 30 40 60 Warehouse 
requirements 

Solution.  
 

   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟒 𝑫𝟑 𝑫𝟐 𝑫𝟏  
           

 

(13) 120 
 

   
 
𝑋12 = 40 

 

 
 

𝑆1 

(2) 70    
 
 

 
 
 

𝑆2 

(5) 50    
 
 

 

 
 

𝑆3 

240 
 240 

110 30 40 60 Demand  

  (3) (8) ↑(15) (4) Difference between 
the smallest two cost 
(penalty) 

𝑋12 = min(120,40) = 40 , remove the second column from the table and remaining only 
80 in the first row 

   Difference 
between the 
smallest two 

costs (penalty)  

supply   𝑫𝟒 𝑫𝟑 𝑫𝟏  
           

 

(13)← 120 
 

 
 
𝑋14 

  
 
 

𝑆1 

(2) 70    
 
 

𝑆2 

(5) 50    

 
 

𝑆3 

240 
 240 

110 30 60 Demand  

  (3) (8) (4) Difference between the 
smallest two costs (penalty) 

 

𝑋14 = min(80,110) = 80, remove the first row and remaining only 30 in the fourth column 

17 22 

 

24 

20 

 

4 

37 9 7 

32 20 15 37 

22 

 
24 

20 

 
37 

32 37 
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15 
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   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟒 𝑫𝟑 𝑫𝟏  
           

 

(2) 70   
 

𝑿𝟐𝟑 = 𝟑𝟎 

 
 
 

𝑆2 

(5) 50    

 
 

𝑆3 

240 
 240 

110 30 60 Demand  

  (8) (𝟏𝟏) ↑ (8) Difference between the 
smallest two costs 
(penalty) 

 

𝑋23 = min(70 , 30) = 30, remove third column three and remaining only 40 in second row 
 

   Difference 
between the 
smallest two 

costs 
(penalty)  

supply   𝑫𝟒 𝑫𝟏  
           

 

(17)← 70 
40 

 
 
𝑋24 = 30 

 
 
𝑋21 = 10 

𝑆2 

(17) 50   

 
𝑋31 = 50 

𝑆3 

240 
 240 

110 

30 
60 Demand  

  (8) (8) Difference between the 
smallest two costs 
(penalty) 

 

𝑋24 = min(70 , 30) = 30 , remove fourth column and remaining only 40 in first row. 
𝑋21 = 10  , 𝑋31 = 50 

We will return to the origin table of transportation problem. 
Factory 
Capacity  

𝑊4 𝑊3 𝑊2 𝑊1 Warehouse→ 
  
Factories ↓ 

120  
 
𝑋14 = 80 

 
 
𝑋13= 0 

 
 
𝑋12 = 40 

 

 
𝑋11 = 0 

𝐹1 

70  
 
𝑋24 = 30 

 
 
𝑋23 = 30 

 
 
𝑋22 = 0 

 
 
𝑋21 = 10 

𝐹2 

50  
 
𝑋34 = 0 

 
 
𝑋33 = 0 

 
 
𝑋32 = 0 

 

 
𝑋31 = 50 

𝐹3 

240 
 

240 

110 30 40 60 Warehouse 
requirements 

The total cost to transportation is 𝑀𝑖𝑛 𝑍 = ∑  𝑛
𝑗=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑚
𝑖=1 

         𝑍 = 40 × 22 + 80 × 4 + 10 × 24 + 30 × 9 + 30 × 7 + 50 × 32 = 3520 

The number of occupying cells are  𝑚 + 𝑛 − 1 = 3 + 4 − 1 = 6 
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Homework. 
(1) The  following table explains transportation problem that contains three units and three 
centers and also explains available quantities in the units and demand quantities from 
centers. It also explains transport cost from units to centers.  

Find the initial basic feasible solution by the following three method and compare the 
results  by these three methods  
1. By north-west corner rule. 
2. By least cost method.  
3. By Vogel's approximation method. 

 
Total 

available 
quantities 

C 𝑩 𝑨                                   Centers  
           
Units 

24 
 

 
 

 
 
 

 
 
 

1 

28   
 
 

 
 
 

2 

8   
 
 

 
 
 

3 

60 

60 
22 20 18 Total demand quantities  

 

  7.5. Testing initial basic feasible solution and obtain by it the optimal 

solution 

To find the optimal solution there are two methods. 

  1.Stepping Stone Method: 

2. Modified Distribution method  

1.Stepping Stone Method: is an optimization technique used to find optimal 

transformation cost. 

In stepping stone method, we form loops for every unoccupied cell and evaluate them for 

optimality.  

Steps in Stepping Stone Method: 
1. Determine an initial basic feasible solution using any one of the following: 

a)North-West Corner Rule 

b)Least cost Mothed  

c) Vogel's Approximation Method 

2 

 
0 

10 

 

8 

14 12 

16 

 

4 

 
6 
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2. Make sure that the number of occupied cells is exactly equal to m+n-1, where m is the 

number of rows and n is the number of columns.       

3. Select an unoccupied cell. Beginning at this cell, trace a closed path, starting from the 

selected unoccupied cell until finally returning to that same unoccupied cell. 

The cells at the turning points are called "Stepping Stones" on the path. 

4. Assign plus (+) and minus (-) signs alternatively on each corner cell of the closed path just 

traced, beginning with the plus sign at unoccupied cell to be evaluated. 

5. Add the unit transportation costs associated with each of the cell traced in the closed path. 

This will give net change in terms of cost. 

6. Repeat steps 3 to 5 until all unoccupied cells are evaluated. 

7. Check the sign of each of the net change in the unit transportation costs. If all the net 

changes computed are greater than or equal to zero, an optimal solution has been reached. If 

not, it is possible to improve the current solution and decrease the total transportation cost, so 

move to step 8.. 

8. Select the unoccupied cell having the most negative net cost change and determine the 

maximum number of units that can be assigned to this cell. The smallest value with a 

negative position on the closed path indicates the number of units that can be shipped to the 

entering cell. Add this number to the unoccupied cell and to all other cells on the path marked 

with a plus sign. Subtract this number from cells on the closed path marked with a minus 

sign. 

Example 4. Find the optimal solution by stepping stone method for the following T.P. 

supply  𝐷2 𝐷1  

60  
 

𝑋12 = 0 

 
 
𝑋11 = 60 

𝑆1 

40  
 

𝑋22 = 0 

 
 

𝑋21 = 40 

𝑆2 

70  
 

𝑋32 = 65 

 
 
𝑋31 =5 

𝑆3 

 
 

65 105 Demand  

solution. (1)The initial basic feasible solution which obtained by north-west corner rule is  

 𝑀𝑖𝑛 𝑍 =∑ 

𝑛

𝑗=1

∑𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑖=1

 

𝑍 = 60 × 4 + 40 × 7 + 5 × 3 + 65 × 10 = 1185 

 (2) the number of occupied cells is exactly equal to m+n-1, That is 3 + 2 − 1 =4, this 

emphasis that the solution can be improved and reach by it to the optimal solution. 

2 

7 

4 

 

5 

3 10 



47 
Asst. Lecturer  Naser Oda Jassim 

Which are   X11 = 60,  X21 = 40,  X31 = 5,   X32 = 65. 

(3)Select an unoccupied cell which is  𝑋12 = 0 , trace a closed path, starting from the selected 

unoccupied cell until finally returning to that same unoccupied cell. 

(1) 𝑆1𝐷2 → 𝑆1𝐷1 → 𝑆3𝐷1 → 𝑆3𝐷2 

4. Assign plus (+) and minus (-) signs alternatively on each corner cell of the closed path just 

traced, beginning with the plus sign at unoccupied cell to be evaluated.  

2 − 4 + 3 − 10 = −9  

5. Add the unit transportation costs associated with each of the cell traced in the closed path. 

This will give net change in terms of cost. Let the quantity which it will convert through 

unoccupied cell is 𝐾 unit. 

supply  𝐷2 𝐷1  

60  
𝐾 

 
60 − 𝐾 

 

𝑆1 

40  
 

 

 
 

 

𝑆2 

70  
65 − 𝐾 

 

 
5 + 𝐾 

 

𝑆3 

 
 

65 105 Demand  

𝐾 = Min(60,65) = 60  

6. Add the unit transportation costs associated with each of the cell traced in the closed path. 

This will give net change in terms of cost. 

supply  𝐷2 𝐷1  

60  
 

𝑋12 = 60 

 
 
𝑋11 = 0 

𝑆1 

40  
 
𝑋22 = 0 

 
 
𝑋21 = 40 

𝑆2 

70  
 

𝑋32 = 5 

 
 
𝑋31 = 65 

𝑆3 

 
 

65 105 Demand  

𝑀𝑖𝑛 𝑍 =∑ 

𝑛

𝑗=1

∑𝐶𝑖𝑗

𝑚

𝑖=1

𝑋𝑖𝑗 = 60 × 2 + 40 × 7 + 65 × 3 + 5 × 10 = 645 

7. Repeat steps 3 to 5 until all unoccupied cells are evaluated. 

 (2) 𝑆2𝐷2 → 𝑆2𝐷1 → 𝑆3𝐷1 → 𝑆3𝐷2 

5 − 7 + 3 − 10 = −9 

2 

7 

4 

 

5 

3 10 
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supply  𝐷2 𝐷1  

60   
 

𝑆1 

40  

𝐾 
 

 

40 − 𝐾 
 

𝑆2 

70  

5 − 𝐾 
 

 
65 + 𝐾 

 

𝑆3 

 
 

65 105 Demand  

𝐾 = Min(40,5) = 5  

supply  𝐷2 𝐷1  

60  
 

𝑋12 = 60 

 

 
𝑋11 = 0 

𝑆1 

40  
 

𝑋22 = 5 

 
 

𝑋21 = 35 

𝑆2 

70  
 

𝑋32 = 0 

 

 
𝑋31 = 70 

𝑆3 

 
 

65 105 Demand  

𝑀𝑖𝑛 𝑍 =∑ 

𝑛

𝑗=1

∑𝐶𝑖𝑗

𝑚

𝑖=1

𝑋𝑖𝑗 = 60 × 2 + 35 × 7 + 5 × 5 + 70 × 3 = 600 

Example 5. Find the optimal solution by stepping stone method for the following T.P. 

Capacity  𝐷5 𝐷4 𝐷3 𝐷2 𝐷1 Destination→ 
  
Sources  ↓ 

100  
 
𝑋15 = 0 

 
 
𝑋14 = 0 

 
 
𝑋13= 70 

 
 
𝑋12 = 30 

 
 
𝑋11 = 0 

𝑆1 

125  
 
𝑋25 = 0 

 
 
𝑋24 = 80 

 
 
𝑋23 = 0 

 
 
𝑋22 = 0 

 
 
𝑋21 = 45 

𝑆2 

150  
 

𝑋35 = 90 

 
 
𝑋34 = 0 

 
 
𝑋33 = 0 

 
 

𝑋32 = 30 

 
 
𝑋31 = 30 

𝑆3 

 
 

90 80 70 60 75 Demand 

solution. (1)The initial basic feasible solution which obtained by north-west corner rule is  

 𝑀𝑖𝑛 𝑍 =∑ 

𝑛

𝑗=1

∑𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑖=1

 

𝑀𝑖𝑛 𝑍 = 30 × 27 + 70 × 28 + 45 × 29 + 80 × 27 + 30 × 34 + 30 × 27 + 90 × 30

= 10765 

2 

7 

4 

 

5 

3 10 

28 27 

 

29 

37 

 

34 

32 32 27 

34 37 30 27 

30 

28 

30 
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The number of occupied cells is exactly equal to m+n-1, That is 3 + 5 − 1 =7, this emphasis 

that the solution can be improved and reach by it to the optimal solution. 

1. We start by testing empty cell 𝑆1𝐷1 

𝑆1𝐷1 → 𝑆1𝐷2 → 𝑆3𝐷2 → 𝑆3𝐷1 

37 − 27 + 27 − 34 = 3 

Since the result change of the cost is positive then the solution for this cell is optimal, that is, 

it must be empty.  

2. Test the empty cell 𝑆1𝐷4 

𝑆1𝐷4 → 𝑆2𝐷4 → 𝑆2𝐷1 → 𝑆3𝐷1 → 𝑆3𝐷2 → 𝑆1𝐷2 

34 − 27 + 29 − 34 + 27 − 27 = 2 , since the result is positive , then the solution is 

optimal for this cell. 

 

3. By same way , we test the cell 𝑆1𝐷5  

𝑆1𝐷5 → 𝑆3𝐷5 → 𝑆3𝐷2 → 𝑆1𝐷2 

30 − 30 + 27 − 27 = 0 , since the result is zero , then the solution is optimal for this cell. 

4. Test the cell 𝑆2𝐷2 

𝑆2𝐷2 → 𝑆2𝐷1 → 𝑆3𝐷1 → 𝑆3𝐷2 

 32 − 29 + 34 − 27 = 10,  since the result is positive , then the solution is optimal for 

this cell. 

5. Test the cell 𝑆2𝐷3 and the path is  

𝑆2𝐷3 → 𝑆2𝐷1 → 𝑆3𝐷1 → 𝑆3𝐷2 → 𝑆1𝐷2 → 𝑆1𝐷3 

32 − 29 + 34 − 27 + 27 = 9, since the result is positive , then the solution is optimal for 

this cell. 

6. Test the cell 𝑆2𝐷5 and the path is 

𝑆2𝐷5 → 𝑆3𝐷5 → 𝑆3𝐷1 → 𝑆2𝐷1 

28-30+34-29=3 , since the result is positive , then the solution is optimal for this cell. 

 7. Test the cell 𝑆3𝐷3 and the path is 

𝑆3𝐷3 → 𝑆3𝐷2 → 𝑆1𝐷2 → 𝑆1𝐷3 
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37 − 27 + 27 − 28 = 9, since the result is positive , then the solution is optimal for this 

cell. 

8. Test the cell 𝑆3𝐷4 and the path is 

𝑆3𝐷4 → 𝑆3𝐷1 → 𝑆2𝐷1 → 𝑆2𝐷4 

30 − 34 + 29 − 27 = −2, here the result is negative , this mean that the solution is not 

optimal for this cell  and hence it must be occupied.  

Capacity  𝐷5 𝐷4 𝐷3 𝐷2 𝐷1 Destination→ 
  
Sources  ↓ 

100  
 
 

 
 
 

 
 
 

 
 
 

 

 
 

𝑆1 

125  
 

 

 

80 − 𝐾 
 
 

 

 
 
 

 

45 + 𝐾 
 

𝑆2 

150  
 

 

 
K 

 

 
 
 

 
 
 

 

30 − 𝑘 
 

𝑆3 

 
 

90 10 70 60 75 Demand 

𝐾 = Min(30,80) = 30  

Capacity  𝐷5 𝐷4 𝐷3 𝐷2 𝐷1 Destination→ 
  
Sources  ↓ 

100  
 
𝑋15 = 0 

 
 
𝑋14 = 0 

 
 
𝑋13= 70 

 
 
𝑋12
= 30 

 
 
𝑋11 = 0 

𝑆1 

125  
 
𝑋25 = 0 

 
 
𝑋24
= 50 

 
 
𝑋23 = 0 

 
 
𝑋22
= 0 

 
 
𝑋21 = 75 

𝑆2 

150  
 
𝑋35
= 90 

 
 
𝑋34
= 30 

 
 
𝑋33 = 0 

 
 
𝑋32
= 30 

 

 
𝑋31 = 0 

𝑆3 

 
 

90 80 70 60 75 Demand 

𝑀𝑖𝑛 𝑍 =∑ 

3

𝑖=1

∑𝐶𝑖𝑗𝑋𝑖𝑗 = 10705

5

𝑗=1

 

 

28 27 

 

29 

37 

 

34 

32 

32 

27 

34 37 30 27 

30 

28 

30 
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7.6. Unbalanced Transportation Problems  

    So far we have discussed the balanced type of transportation problems where the 

total destination requirements equals the total original capacity (this mean that, 

∑ 𝑎𝑖𝑗
 
 = ∑ 𝑏𝑖𝑗 

  ) . But, sometimes in particular situations, the demand may be more than 

the availability or vice versa (this mean that, ∑ 𝑎𝑖𝑗
 
 ≠ ∑ 𝑏𝑖𝑗 

  ).                                                       

    Thus, if an transportation problem, the sum of all available quantities is not equal to 

the sum of requirements, that is, ∑ 𝑎𝑖
𝑚
𝑖=1 ≠ ∑ 𝑏𝑗

𝑛
𝑗=1 , then such problem is called 

unbalanced transportation problem.                                                                                                    

   7.6.1. To modify unbalanced T.P. to balanced type  

An unbalanced T.P. may occur in two different cases  .  

 Case 1. Excess of availability, this mean that  ∑𝑎𝑖 ≥ ∑𝑏𝑗 , 

Case 2. Shortage in availability, this mean that  ∑𝑎𝑖 ≤ ∑𝑏𝑗                                                           

Working Rule 1: Whenever ∑𝒂𝒊 ≥ ∑𝒃𝒋, we introduce a dummy destination-column in 

the transportation table. The unit transportation costs to this dummy destination are all 

set equal to zero. The requirement at this dummy destination is assumed to be equal to 

the difference ∑𝑎𝑖 − ∑𝑏𝑗.                                                                                                                          

Working Rule 2: Whenever ∑𝒂𝒊 ≤ ∑𝒃𝒋 , introduce a dummy source in the 

transportation table. The cost of transportation form this dummy source to any 

destination are all set equal to zero. The availability at this dummy source is assumed to 

be equal to the difference (∑𝑏𝑗 − ∑𝑎𝑖).                                                                                                

    Thus, an unbalanced transportation problem can be modified to balanced problem by 

simply introducing fictitious sink in the first case a and fictitious source in the second. 

The inflow from the source to a fictitious sink represents the surplus at the source. 

Similarly, the flow from the fictitious source to sink represents the unfilled demand at 

the sink. For convenience, costs of transporting a unit item from fictitious sources or to 

fictitious sinks  9as the case may be) are assumed to be zero. The resulting problem 

then becomes balanced one and can be solved by the same procedure as explained 

earlier.                                                                                               
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Example 6. find the initial basic feasible solution of the following transportation 

problem by any method. 

Total 
available 
quantities 

𝑫𝟑 𝑫𝟐 𝑫𝟏                                   Centers  
           
Units 

20 
 

 
 

 
 
 

 
 
 

𝑆1 

9   
 
 

 
 
 

𝑆2 

11   
 
 

 
 
 

𝑆3 

    40 
       33 

15 8 10 Total demand quantities  

Solution: Since  ∑𝒂𝒊 = 𝟒𝟎 > ∑𝒃𝒋 = 𝟑𝟑, that is, the given T.P. problem is unbalanced. 

We introduce a dummy destination-column 𝑫𝟒 in the transportation table. The unit 

transportation costs to this dummy destination are all set equal to zero. The 

requirement at this dummy destination is assumed to be equal to 40 − 33 = 7. 

Total 
available 

quantities 

𝑫𝟒 𝑫𝟑 𝑫𝟐 𝑫𝟏                                   Centers  
           

Units 

20 
 

 
 

 

 
 
 

 
 

 

 
 

𝑆1 

9  
 
 

 
 
 

 
 
 

 
 
 

𝑆2 

11  
 
 

 
 
 

 
 

 

 
 

𝑆3 

    40 
  40     

7 15 8 10 Total demand quantities  

                          We will solve it by least cost method.                    

           We choose the smallest cost in the matrix. It is in the cell (1 ,2).  

𝑿𝟏𝟐 = min(𝑎1 , 𝑏2) = (20 ,8) = 8, remove second column and remain only 12 in first row 
we choose the second smallest cost in the matrix. It is in the cell (1,4). 

𝑿𝟏𝟒 = min(𝑎1 , 𝑏4) = (12 , 7) = 7, remove fourth column and remain only 5 in first row. 
We choose the third smallest cost in the matrix. It is in the cell (2,1). 
𝑿𝟐𝟏 = min(𝑎2 , 𝑏1) = (9 ,10) = 9 ,remove second row and remaining only 1 in the first 
column  
We choose the third smallest cost in the matrix. It is in the cell (3,3). 
𝑿𝟑𝟑 = min(𝑎3 , 𝑏3) = (11 ,15) = 11 ,remove third row and remaining only 4 in the third 
column . 
We choose the third smallest cost in the matrix. It is in the cell (1,1). 
𝑿𝟏𝟏 = min(𝑎1 , 𝑏1) = (1 ,5) = 1 , remove first column and remaining only 4 in the first row. 
The last cost remains in the cell (1 ,3)  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑋13 = 4 

1 

 
1 

2 

 

2 

4 2 

2 

 

3 

 
1 

 

1 

 
1 

2 

 
2 

4 2 

2 

 
3 

 
1 

 

 

 

0 

 
0 

 
0 
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Total 
available 

quantities 

𝑫𝟒 𝑫𝟑 𝑫𝟐 𝑫𝟏                                   Centers  
           

Units 

20 
 

 
 

𝑿𝟏𝟒 = 𝟕 

 
 
𝑋13 = 4 

 
 
𝑿𝟏𝟐 = 𝟖 

 

 
𝑿𝟏𝟏 = 𝟏 

𝑺𝟏 

9  
 
𝑋24 = 0 

 
 
𝑋23 = 0 

 
 
𝑋22 = 0 

 
 
𝑿𝟐𝟏 = 𝟗 

𝑺𝟐 

11  
 
𝑋34 = 0 

 
 
𝐗𝟑𝟑 = 𝟏𝟏 

 
 
𝑋32 = 0 

 

 
𝑋31 = 0 

𝑺𝟑 

    40 
  40     

7 15 8 10 Total demand quantities  

𝑀𝑖𝑛 𝑍 =∑ 

𝑛

𝑗=1

∑𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑖=1

 

= 1 × 2 + 8 × 1 + 4 × 2 + 9 × 1 + 11 × 1 = 38 
 We see that the number of occupying cells are 𝑚+ 𝑛 − 1 = 3 + 4 − 1 = 6 

Example 7. Find the optimal solution of the following transportation problem. 
Total available 
quantities 

𝐷3 𝐷2 𝐷1 Centers→ 
  
Units ↓ 

100  
 
 

 
 
 

 

 
 

𝑺𝟏 

75  
 
 

 
 
 

 
 
 

𝑺𝟐 

25  
 

 

 
 
 

 

 
 

𝑺𝟑 

125    
 
 

𝑺𝟒 

325 
 

405 

130 125 150 Total demand 
quantities 

Solution: ∑𝒂𝒊 < ∑𝒃𝒋 , that is, the given T.P. problem is unbalanced. We introduce a dummy source in 

the transportation table. The cost of transportation form this dummy source to any destination are all 

set equal to zero.  The requirement at this dummy source is assumed to be equal to 405 − 325 = 80. 

Total  
available  
quantities 

𝐷3 𝐷2 𝐷1 Centers→ 

  

Units ↓ 

100  
 
 

 
 
 

 

 
 

𝑆1 

75  
 
 

 
 
 

 
 
 

𝑆2 

25  
 

 

 
 
 

 

 
 

𝑆3 

125    
 
 

𝑆4 

80    
 
 
 

𝑆5 

405 
 

405 

130 125 150 Total demand 
quantities 

1 

 
1 

2 

 
2 

4 2 

2 

 
3 

 
1 

 

 

 

0 

 
0 

 
0 

 

2 7 

 4 

8 

 9 10 

2 8 2 

5 6 11 

2 7 

 4 

8 

 9 10 

2 8 2 

5 6 11 

0 0 0 
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 8. Assignment problems 

     This chapter deals with a very interesting method called the 'Assignment Technique' which 

is applicable to a class of very practical   problems generally called 'Assignment problem'.      

                                                                                                                              

   The name 'Assignment problem' originates from the classical problem where the objective 

is to assign a number of origins (jobs) to the equal number of destinations (persons) at a 

minimum cost (or maximum profit). To examine the nature of assignment problem, suppose 

there are n jobs to be performed and n persons are available for doing these jobs. 

Assume that each person can do each job at a time, though will varying degree of 

efficiency. Let 𝑪𝒊𝒋 be the cost (payment) if the 𝒊𝒕𝒉 person is assigned the 𝒋𝒕𝒉 𝒋𝒐𝒃, the 

problem is to find an assignment (which job should be assigned to which person) so that 

the total cost for performing all jobs is minimum.                                                                   

       Further, such types of problems may consist of assigning men to offices, classes to 

rooms, drives to trucks, trucks to delivery routes, or problems to research teams, etc. The 

assignment problem can be stated in the form of 𝑛 × 𝑛 cost-matrix [𝐶𝑖𝑗]of real number as 

given in the following table.                                                                                                                        

𝑛 ⋯ 𝑗 ⋯ 2 1 jobs→ 
↓ 

persons 

𝐶1𝑛  𝐶1𝑗  𝐶12 𝐶11 1 

𝐶2𝑛  𝐶2𝑗  𝐶22 𝐶21 2 

      ⋮ 

𝐶𝑖𝑛  𝐶𝑖𝑗  𝐶𝑖2 𝐶𝑖1 𝑖 

      ⋮ 

𝐶𝑛𝑛  𝐶𝑛𝑗  𝐶𝑛2 𝐶𝑛1 𝑛 

 

9.1. Mathematical Formulation of assignment problem 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡: 𝑍 =∑ 

𝑛

𝑖=1

∑𝐶𝑖𝑗𝑋𝑖𝑗 ,

𝑛

𝑗=1

 𝑖 = 1,… , 𝑛;   𝑗 = 1,… , 𝑛 

𝑋𝑖𝑗 = {
1       𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑡ℎ 𝑗𝑜𝑏
0                                                           𝑖𝑓 𝑛𝑜𝑡 

 

∑ 𝑿𝒊𝒋 = 𝟏
𝒏
𝒋=𝟏  (one job is done by the 𝑖𝑡ℎ person, 𝑖 = 1,… , 𝑛)    and  

∑ 𝑋𝑖𝑗 = 1
𝑛
𝑖=1   (only one person should be assigned the 𝑗𝑡ℎ job, 𝑗 = 1,… , 𝑛) 

Where 𝑋𝑖𝑗  denotes that 𝑗𝑡ℎ 𝑗𝑜𝑏 is to be assigned to the 𝑖𝑡ℎ 𝑝𝑒𝑟𝑠𝑜𝑛. 

    This special structure of assignment problem allows a more convenient method of 
solution in comparison  to simplex method.   
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9.2. Fundamental Theorems 
The solution to an assignment problem is fundamentally based on the following tow 

theorems.  .                                                                                                                                   

                                     

Theorem 1. Reduction theorem: In an assignment problem, if we add (or subtract ) a 

constant to every element of a row ( or column) of the cost matrix [𝐶𝑖𝑗], then an assignment 

plan that minimizes the total cost for the new cost matrix also minimizes the total cost for the 

original cost matrix.                                                                                                                       

 

Corollary. If (𝑋𝑖𝑗), 𝑖 = 1,… , 𝑛 is an optimal solution for an assignment problem with cost 

(𝐶𝑖𝑗), then it is also optimal for the problem with cost (𝐶𝑖𝑗
′ ) when  

𝐶𝑖𝑗 = 𝐶𝑖𝑗
′   for 𝑖 , 𝑗 = 1 , … , 𝑛 , 𝑗 ≠ 𝑘 

𝐶𝑖𝑘
′ = 𝐶𝑖𝑘 − 𝐴 , 𝑤ℎ𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   

  

Theorem 2. In an assignment problem with cost (𝐶𝑖𝑗), 𝑖𝑓 𝐶𝑖𝑗 ≥ 0 then a feasible solution 

(𝑋𝑖𝑗) which satisfying ∑  𝑛
𝑖=1 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗 = 0

𝑛
𝑗=1 , is optimal for the problem. 

 

Theorem . (König Theorem). Let 𝑃 be the set of 0 elements of a matrix 𝐶. Then the 

maximum number of 0's that can be selected in 𝑃 such that no row or column of 𝐶 contains 

more than one such 0 is equal to the minimum number of lines covering all the elements of 𝑃. 
  

Corollary. The maximum subset of 𝑃 provides an optimal assignment when the minimum 
number of lines to cover all the elements of 𝑃 is equal to the order of 𝐶.  

 

8.3.   The Hungarian Method For Assignment problem  algorithm: An 

example1. 

We consider an example where four jobs (J1, J2, J3, and J4) need to be executed by four 

workers (W1, W2, W3, and W4), one job per worker. The matrix below shows the cost of 

assigning a certain worker to a certain job. The objective is to minimize the total cost of the 

assignment. 

 J1 J2 J3 J4 

W1 82 83 69 92 

W2 77 37 49 92 

W3 11 69 5 86 

W4 8 9 98 23 

 

Below we will explain the Hungarian algorithm using this example. Note that a general 

description of the algorithm can be found here. 

http://www.hungarianalgorithm.com/hungarianalgorithm.php


56 
Asst. Lecturer  Naser Oda Jassim 

 

Solution. Step 1: Subtract row minima 

We start with subtracting the row minimum from each row. The smallest element in the first 

row is, for example, 69. Therefore, we subtract 69 from each element in the first row. The 

resulting matrix is: 

 J1 J2 J3 J4  

W1 13 14 0 23 (−69) 

W2 40 0 12 55 (−37) 

W3 6 64 0 81 (−5) 

W4 0 1 90 15 (−8) 

Step 2: Subtract column minima 

Similarly, we subtract the column minimum from each column, giving the following matrix: 

 J1 J2 J3 J4 

W1 13 14 0 8 

W2 40 0 12 40 

W3 6 64 0 66 

W4 0 1 90 0 

    (−15) 

Step 3: Cover all zeros with a minimum number of lines    

We will now determine the minimum number of lines (horizontal or vertical) that are required 

to cover all zeros in the matrix. All zeros can be covered using 3 lines: 

 J1 J2 J3 J4 

W1 13 14 [0] 8 

W2 40 [0] 12 40 

W3 6 64 × 66 

W4 [0] 1 96 × 

Because the number of lines required (3) is lower than the size of the matrix (n=4), we 

continue with Step 4. 
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Step 4: Create additional zeros 

First, we find that the smallest uncovered number is 6. We subtract this number from all 

uncovered elements and add it to all elements that are covered twice. This results in the 

following matrix: 

 J1 J2 J3 J4 

W1 7 8 0 2 

W2 40 0 18 40 

W3 0 58 0 60 

W4 0 1 96 0 

Now we return to Step 3. 

Step 3: Cover all zeros with a minimum number of lines 

Again, We determine the minimum number of lines required to cover all zeros in the matrix. 

Now there are 4 lines required: 

 J1 J2 J3 J4 

W1 7 8 [0] 2 

W2 40 [0] 18 40 

W3 [0] 58 × 60 

W4 × 1 96 [0] 

Because the number of lines required (4) equals the size of the matrix (n=4), an optimal 

assignment exists among the zeros in the matrix. Therefore, the algorithm stops. 

The optimal assignment 

The following zeros cover an optimal assignment: 

 J1 J2 J3 J4 

W1 7 8 [0] 2 

W2 40 [0] 18 40 

W3 [0] 58 0 60 

W4 0 1 96 [0] 
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This corresponds to the following optimal assignment in the original cost matrix: 

 J1 J2 J3 J4 

W1 82 83 69 92 

W2 77 37 49 92 

W3 11 69 5 86 

W4 8 9 98 23 

Thus, worker 1 should perform job 3, worker 2 job 2, worker 3 job 1, and worker 4 should 

perform job 4. The total cost of this optimal assignment is to 69 + 37 + 11 + 23 = 140. 

 

Example 2. An account officer has 4 subordinates and 4 tasks, The subordinates differ in 

efficiency. The tasks also differ in their intrinsic difficulty. His estimates of the time each 

would take to perform each task is given in the matrix below. How should the tasks be 

allocated one to one man, so that the total man hours are minimized?                                         

Task→ 

man↓  

T1 T2 T3 T4 

1 8 26 17 11 

2 13 28 4 26 

3 38 19 18 15 

4 19 26 24 10 

 Solution. Step 1: Subtract row minima 

We start with subtracting the row minimum from each row. The smallest element in the first 

row is, 8. Therefore, we subtract 8 from each element in the first row. The resulting matrix is: 

 T1 T2 T3 T4  

1 0 18 9 3 (−8) 

2 9 24 0 22 (−𝟒) 

3 23 4 3 0 (−15) 

4 9 16 14 0 (−10) 
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Step 2: Subtract column minima 

Similarly, we subtract the column minimum from each column, giving the following matrix: 

 T1 T2 T3 T4 

1 0 14 9 3 

2 9 20 0 22 

3 23 0 3 0 

4 9 12 14 0 

  (−4)   

Step 3: Cover all zeros with a minimum number of lines 

Again, We determine the minimum number of lines required to cover all zeros in the matrix. 

Now there are 4 lines required: 

 

 T1 T2 T3 T4 

1 [0] 14 9 3 

2 9 20 [0] 22 

3 23 [0] 3 × 

4 9 12 14 [0] 

Because the number of lines required (4) equals the size of the matrix (n=4), an optimal 

assignment exists among the zeros in the matrix. Therefore, the algorithm stops. 

The optimal assignment 

The following zeros cover an optimal assignment: 

 

 T1 T2 T3 T4 

1 [0] 14 9 3 

2 9 20 [0] 22 

3 23 [0] 3 0 

4 9 12 14 [0] 
1 → 𝑇1 , 2 → 𝑇3 , 3 → 𝑇2 , 4 → 𝑇4. 

Minimum time taken= 8 + 4 + 19 + 10 = 41 
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Homework. (1) A manager has 5 jobs to be done. The following matrix shows the time taken 

by the 𝑗𝑡ℎ 𝑗𝑜𝑏 , (𝑗 = 1, 2,… , 5) on the 𝑖𝑡ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 (𝑖 = 1,2,… , 5). Assign 5 jobs to the 5 

machines so that the total time taken is minimized.  

 

Job→ 

 

Machine ↓ 

J1 J2 J3 J4 J5 

1 9 3 4 2 10 

2 12 10 8 11 9 

3 11 2 9 0 8 

4 8 0 10 2 1 

5 7 5 6 2 9 
 

(2) Consider three jobs to be assigned to three machines. The cost for each combination is 

shown in the table below. Determine the minimal job-machine combinations. 

 

C B A  → Machine  

 

Job↓ 

9 7 5 1 

12 10 14 2 

16 13 15 3 

  

3. Consider four jobs to be assigned to four machines. The cost for each combination is 

shown in the table below. Determine the minimal job – machine combinations.  

                   

D C B A Machine→ 

 
Job↓ 

3 6 4 1 1 
9 10 7 8 2 
9 11 5 4 3 
5 8 7 6 4 
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8.4. Unbalanced assignment problems  
Like the unbalanced transportation problems there could be arise unbalanced assignment 

problems too. They are to be handled exactly in the same manner , this mean that by 

introducing dummy jobs or dummy men, etc. The following unbalanced problem serves as an 

example.  

                                                                                                                                        

Example3.  Consider Unbalanced Assignment problem . 
 

E D C B A Machine→ 

 
Job↓ 

7 6 11 7 5 1 

5 6 5 5 8 2 

3 7 10 7 6 3 

4 2 8 4 10 4 

 
Solution. Convert the 4 × 5 𝑚𝑎𝑡𝑟𝑖𝑥 into a square matrix by adding a dummy row 𝐷5 

 

E D C B A Machine→ 

 
Job↓ 

7 6 11 7 5 1 

5 6 5 5 8 2 

3 7 10 7 6 3 

2 4 8 4 10 4 

0 0 0 0 0 𝑫𝟓 

 

Step 1: Subtract row minima 
E D C B A Machine→ 

 
Job↓ 

2 1 6 2 0 1 

0 1 0 0 3 2 

0 4 7 4 3 3 

0 2 6 2 8 4 

0 0 0 0 0 𝑫𝟓 

 

Step 2: Subtract column minima 

Column-wise reduction is not necessary since all columns contain a single zero. 
 

Step 3: Cover all zeros with a minimum number of lines 

 



62 
Asst. Lecturer  Naser Oda Jassim 

E D C B A Machine→ 

 
Job↓ 

2 1 6 2 [0] 1 

× 1 × [0] 3 2 
[0] 4 7 4 3 3 

× 2 6 2 8 4 

× × [0] × × 𝑫𝟓 
Number of lines drawn ≠Order of a matrix. Hence not optimal, we continue with step 4 

 Step 4: Create additional zeros 

First, we find that the smallest uncovered number is 1. We subtract this number from all 

uncovered elements and add it to all elements that are covered twice. This results in the 

following matrix: 

E D C B A Machine→ 

 
Job↓ 

2 × 5 1 [0] 1 

1 1 × [0] 4 2 
[0] 3 6 3 3 3 

× 1 5 1 8 4 

1 × [0] × 1 𝑫𝟓 
Number of lines drawn ≠Order of a matrix. Hence not optimal, we continue with step 4 

Again added or subtracted 1 from elements. 

 

E D C B A Machine→ 

 
Job↓ 

3 × 5 1 [0] 1 

2 1 × [0] 4 2 
[0] 2 5 2 2 3 

× [0] 4 × 7 4 

2 × [0] × 1 𝑫𝟓 
Number of lines drawn =order of matrix. Hence optimality is reached . Now assign the jobs 
to machines as shown below. 

1 → 𝐴, 2 → 𝐵, 3 → 𝐸, 5 → 𝐷,𝐷5 → 𝐶 
 The total cost of this optimal assignment is to 5 + 5 + 3 + 2+0 = 15 $ 
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